Arabic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bone 2005-Oct

In vitro chondrocyte differentiation using costochondral chondrocytes as a source of primary rat chondrocyte cultures: an improved isolation and cryopreservation method.

يمكن للمستخدمين المسجلين فقط ترجمة المقالات
الدخول التسجيل فى الموقع
يتم حفظ الارتباط في الحافظة
Alison Gartland
Joshua Mechler
April Mason-Savas
Carole A MacKay
Geneviève Mailhot
Sandy C Marks
Paul R Odgren

الكلمات الدالة

نبذة مختصرة

BACKGROUND

Isolating and culturing primary chondrocytes such that they retain their cell type and differentiate to a hypertrophic state is central to many investigations of skeletal growth and its regulation. The ability to store frozen chondrocytes has additional scientific and tissue engineering interest. Previous work has produced approaches of varying yield and complexity but does not permit frozen storage of cells for subsequent differentiation in culture. Investigations of growth plate dysplasias secondary to defective osteoclastogenesis in rodent models of osteopetrosis led us to adapt and modify a culture method and to cryopreserve neonatal rat costochondral chondrocytes.

METHODS

Chondrocytes were isolated from dissected ribs of 3-day-old rat pups by collagenase, hyaluronidase, and trypsin serial digestions. This was done either immediately or after the isolation was interrupted following an initial protease treatment to allow the chondrocytes, still in partially digested rib rudiments, to be frozen and later thawed for culture. Cells were plated in flat-bottom wells and allowed to adhere and grow under different conditions. Choice of media permitted cells to be maintained or induced to differentiate. Cell growth was monitored, as was expression of several relevant genes: collagen types II and X; osteocalcin, Sox9, adipocyte FABP, MyoD, aggrecan, and others. Mineralization was measured by alizarin red binding, and cultures were examined by light, fluorescence, and electron microscopy.

RESULTS

Cells retained their chondrocyte phenotype and ability to differentiate and mineralize the collagen-rich extracellular matrix even after freezing-thawing. RT-PCR showed retention of chondrocyte-specific gene expression, including aggrecan and collagen II. The cells had a flattened, "proliferating zone" appearance initially, and by 2 weeks post-confluence, exhibited swelling and other salient features of hypertrophic cells seen in vivo. Collagen fibrils were abundant in the extracellular matrix, along with matrix vesicles. The switch to collagen type X as marker for hypertrophy was not rigidly temporally regulated as happens in vivo, but its expression increased during hypertrophic differentiation.

CONCLUSIONS

This method should prove valuable as a means of studying chondrocyte regulation and has the advantages of simpler initial dissection, yields of a purer chondrocyte population, and the ability to stockpile frozen raw material for subsequent studies.

انضم إلى صفحتنا على الفيسبوك

قاعدة بيانات الأعشاب الطبية الأكثر اكتمالا التي يدعمها العلم

  • يعمل في 55 لغة
  • العلاجات العشبية مدعومة بالعلم
  • التعرف على الأعشاب بالصورة
  • خريطة GPS تفاعلية - ضع علامة على الأعشاب في الموقع (قريبًا)
  • اقرأ المنشورات العلمية المتعلقة ببحثك
  • البحث عن الأعشاب الطبية من آثارها
  • نظّم اهتماماتك وابقَ على اطلاع دائم بأبحاث الأخبار والتجارب السريرية وبراءات الاختراع

اكتب أحد الأعراض أو المرض واقرأ عن الأعشاب التي قد تساعد ، واكتب عشبًا واطلع على الأمراض والأعراض التي تستخدم ضدها.
* تستند جميع المعلومات إلى البحوث العلمية المنشورة

Google Play badgeApp Store badge