Arabic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Medicinal Chemistry 2003-Jun

The HAG mechanism: a molecular rationale for the therapeutic application of iron chelators in human diseases involving the 2-oxoacid utilizing dioxygenases.

يمكن للمستخدمين المسجلين فقط ترجمة المقالات
الدخول التسجيل فى الموقع
يتم حفظ الارتباط في الحافظة
Hartmut M Hanauske-Abel
Anthony M Popowicz

الكلمات الدالة

نبذة مختصرة

'Iron chelation' is widely understood as synonymous with non-specificity and viewed as a purely physicochemical mode of action, without any defined biomolecular target, broadly interfering with metalloenzymes. The 2-oxoacid-utilizing dioxygenases challenge this preconception. A family of non-heme iron enzymes that rely on chelation-dependent catalysis, they employ common molecules like Krebs cycle intermediates as endogenous iron chelators and consume atmospheric oxygen, inserting one of its atoms into cellular components. These enzymes control the adaptation of cells to hypoxia; the reversal of mutagenic DNA alkylations, the initiation of DNA replication, the translation of mRNAs; the production of extracellular matrix proteins like collagens and fibrillins; and numerous metabolic pathways: from the synthesis of the gibberellin growth hormones of plants, and the formation of carnitine, atropine, endotoxins, and cephalosporin antibiotics, to the breakdown of amino acids. Their pivotal roles in human pathology encompass oncogenesis and cancer angiogenesis, scarring and organ fibrosis, inherited diseases, and retroviral infections. Their unique catalysis, termed earlier the 'HAG mechanism' and known in subatomic detail, requires at least three different substrates to form three different products, and proceeds as a ligand reaction at the non-heme iron atom inside the active site pocket, without any direct involvement of apoenzyme residues. The apoenzyme sterically controls ligand access to the metal. The HAG mechanism-based concept of catalytic chelation directed by an apoenzyme, not merely by complexation parameters, has enabled knowledge-guided design of systemic and tissue-selective inhibitors, and of clinical trials. The HAG mechanism also lends itself to the development of novel, man-made biocatalysts.

انضم إلى صفحتنا على الفيسبوك

قاعدة بيانات الأعشاب الطبية الأكثر اكتمالا التي يدعمها العلم

  • يعمل في 55 لغة
  • العلاجات العشبية مدعومة بالعلم
  • التعرف على الأعشاب بالصورة
  • خريطة GPS تفاعلية - ضع علامة على الأعشاب في الموقع (قريبًا)
  • اقرأ المنشورات العلمية المتعلقة ببحثك
  • البحث عن الأعشاب الطبية من آثارها
  • نظّم اهتماماتك وابقَ على اطلاع دائم بأبحاث الأخبار والتجارب السريرية وبراءات الاختراع

اكتب أحد الأعراض أو المرض واقرأ عن الأعشاب التي قد تساعد ، واكتب عشبًا واطلع على الأمراض والأعراض التي تستخدم ضدها.
* تستند جميع المعلومات إلى البحوث العلمية المنشورة

Google Play badgeApp Store badge