الصفحة 1 من عند 60 النتائج
The presence of proline in the medium was not essential for growth of Streptococcus thermophilus, indicating that there is a proline biosynthetic pathway in this organism. Genetic and biochemical analysis identified and characterized this pathway. Two genes, designated proB and proA, were cloned,
Ornithine delta-aminotransferase (OAT) is an important enzyme in proline biosynthetic pathway and is implicated in salt tolerance in higher plants. OAT transaminates ornithine to pyrroline 5-carboxylate, which is further catalyzed to proline by pyrroline 5-carboxylate reductase. The Vigna
Global interest in sugarcane has increased significantly in recent years because of its economic impact on sustainable energy production. The purpose of the present study was to evaluate changes in the concentrations of total sugars, amino acids, free proline, and total proteins by colorimetric
The isolation and characterization is reported of a cDNA for delta 1-pyrroline-5-carboxylate (P5C) synthetase (cAtP5CS), an enzyme involved in the biosynthesis of proline, from a cDNA library prepared from a dehydrated rosette plant of Arabidopsis thaliana. Southern blot analysis suggested that only
Water deficit is one of the main abiotic factors that affect spring wheat planted in subtropical regions. Accumulation of proline appears to be a promising approach to maintain the productivity of plants under stress condition. However, morphological alterations and growth reduction are observed in
Many landraces of cowpea [Vigna unguiculata (L.) Walp.] are adapted to particular geographical and climatic conditions. Here we describe two landraces grown respectively in arid and temperate areas of Algeria and assess their physiological and molecular responses to drought stress. As expected, when
delta 1-Pyrroline-5-carboxylate synthetase (P5CS) catalyzes the first two steps in proline biosynthesis in plants. The Vigna aconitifolia P5CS cDNA was expressed in Escherichia coli, and the enzyme was purified to homogeneity. The Vigna P5CS exhibited two activities, gamma-glutamyl kinase (gamma-GK)
Many plants synthesize and accumulate proline in response to osmotic stress. Despite the importance of this pathway, however, the exact metabolic route and enzymes involved in the synthesis of proline in plants have not been unequivocally identified. We report here the isolation of a mothbean (Vigna
The Delta(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned) is the rate-limiting enzyme in proline (Pro) biosynthesis in plants and is subject to feedback inhibition by Pro. It has been suggested that the feedback regulation of P5CS is lost in plants under stress conditions. We compared
Legume root nodule nitrogen-fixing activity is severely affected by osmotic stress. Proline accumulation has been shown to induce tolerance to salt stress, and transgenic plants over-expressing Delta(1)-pyrroline-5-carboxylate synthetase (P5CS), which accumulates high levels of proline, display
Proline prototrophy was restored to an Escherichia coli proBA proline auxotroph by ornithine and a mothbean (Vigna aconitifolia) cDNA expression library. This novel strategy, "trans-complementation," allowed isolation of a cDNA encoding ornithine delta-aminotransferase (delta-OAT). This enzyme
The effect of proline, isoleucine, leucine, valine, lysine and ornithine under standard physiological conditions, on purified Vigna catjang cotyledon and buffalo liver arginases was studied. The results showed that V. catjang cotyledon arginase is inhibited by proline at a lower concentration than
This study aimed to evaluate the effect of boiling seeds of three cowpea (Vigna unguiculata) varieties on nutrient ileal and total tract digestibilities in rats and in vitro hindgut production of short-chain fatty acids (SCFAs). Boiling influenced nutrient ileal and total tract digestibilities, and
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions. It contributes to man food security by providing a protein-rich diet. However, its production is limited by abiotic stresses such as salinity. This study aims to evaluate the salt tolerance of
The use of plant growth-promoting rhizobacteria is economically viable and environmentally safe for mitigating various plant stresses. Abiotic stresses such as flood and drought are a serious threat to present day agriculture. In the present study, the indole-3-acetic acid-producing rhizobacterium