Belarusian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Lipids in Health and Disease 2011-Dec

Inhibition of nitric oxide in LPS-stimulated macrophages of young and senescent mice by δ-tocotrienol and quercetin.

Перакладаць артыкулы могуць толькі зарэгістраваныя карыстальнікі
Увайсці / Зарэгістравацца
Спасылка захоўваецца ў буферы абмену
Asaf A Qureshi
Xiaoyu Tan
Julia C Reis
Mostafa Z Badr
Christopher J Papasian
David C Morrison
Nilofer Qureshi

Ключавыя словы

Рэферат

BACKGROUND

Changes in immune function believed to contribute to a variety of age-related diseases have been associated with increased production of nitric oxide (NO). We have recently reported that proteasome inhibitors (dexamethasone, mevinolin, quercetin, δ-tocotrienol, and riboflavin) can inhibit lipopolysaccharide (LPS)-induced NO production in vitro by RAW 264.7 cells and by thioglycolate-elicited peritoneal macrophages derived from four strains of mice (C57BL/6, BALB/c, LMP7/MECL-1(-/-) and PPAR-α(-/-) knockout mice). The present study was carried out in order to further explore the potential effects of diet supplementation with naturally-occurring inhibitors (δ-tocotrienol and quercetin) on LPS-stimulated production of NO, TNF-α, and other pro-inflammatory cytokines involved in the ageing process. Young (4-week-old) and senescent mice (42-week old) were fed control diet with or without quercetin (100 ppm), δ-tocotrienol (100 ppm), or dexamethasone (10 ppm; included as positive control for suppression of inflammation) for 4 weeks. At the end of feeding period, thioglycolate-elicited peritoneal macrophages were collected, stimulated with LPS, LPS plus interferon-β (IFN-β), or LPS plus interferon-γ (IFN-γ), and inflammatory responses assessed as measured by production of NO and TNF-α, mRNA reduction for TNF-α, and iNOS genes, and microarray analysis.

RESULTS

Thioglycolate-elicited peritoneal macrophages prepared after four weeks of feeding, and then challenged with LPS (10 ng or 100 ng) resulted in increases of 55% and 73%, respectively in the production of NO of 46-week-old compared to 8-week-old mice fed control diet alone (respective control groups), without affecting the secretion of TNF-α among these two groups. However, macrophages obtained after feeding with quercetin, δ-tocotrienol, and dexamethasone significantly inhibited (30% to 60%; P < 0.02) the LPS-stimulated NO production, compared to respective control groups. There was a 2-fold increase in the production of NO, when LPS-stimulated macrophages of quercetin, δ-tocotrienol, or dexamethasone were also treated with IFN-β or IFN-γ compared to respective control groups. We also demonstrated that NO levels and iNOS mRNA expression levels were significantly higher in LPS-stimulated macrophages from senescent (0.69 vs 0.41; P < 0.05), compared to young mice. In contrast, age did not appear to impact levels of TNF-α protein or mRNA expression levels (0.38 vs 0.35) in LPS-stimulated macrophages. The histological analyses of livers of control groups showed lesions of peliosis and microvesicular steatosis, and treated groups showed Councilman body, and small or large lymphoplasmacytic clusters.

CONCLUSIONS

The present results demonstrated that quercetin and δ-tocotrienols inhibit the LPS-induced NO production in vivo. The microarray DNA analyses, followed by pathway analyses indicated that quercetin or δ-tocotrienol inhibit several LPS-induced expression of several ageing and pro-inflammatory genes (IL-1β, IL-1α, IL-6, TNF-α, IL-12, iNOS, VCAM1, ICAM1, COX2, IL-1RA, TRAF1 and CD40). The NF-κB pathway regulates the production of NO and inhibits the pro-inflammatory cytokines involved in normal and ageing process. These ex vivo results confirmed the earlier in vitro findings. The present findings of inhibition of NO production by quercetin and δ-tocotrienol may be of clinical significance treating several inflammatory diseases, including ageing process.

Далучайцеся да нашай
старонкі ў facebook

Самая поўная база дадзеных пра лекавыя травы, падтрыманая навукай

  • Працуе на 55 мовах
  • Лячэнне травой пры падтрымцы навукі
  • Распазнаванне траў па малюнку
  • Інтэрактыўная GPS-карта - пазначце травы па месцы (хутка)
  • Чытайце навуковыя публікацыі, звязаныя з вашым пошукам
  • Шукайце лекавыя зёлкі па іх уздзеянні
  • Арганізуйце свае інтарэсы і будзьце ў курсе навінавых даследаванняў, клінічных выпрабаванняў і патэнтаў

Увядзіце сімптом альбо захворванне і прачытайце пра зёлкі, якія могуць дапамагчы, набярыце траву і паглядзіце хваробы і сімптомы, супраць якіх яна выкарыстоўваецца.
* Уся інфармацыя заснавана на апублікаваных навуковых даследаваннях

Google Play badgeApp Store badge