Старонка 1 ад 21 вынікі
Little is known about interactive effects of pH-aluminum (Al) on reactive oxygen species (ROS) and methylglyoxal (MG) metabolisms in plants. Citrus sinensis seedlings were fertilized with nutrient solution at an Al concentration of 1 or 0 mM and a pH of 4.0, 3.5, 3.0 or 2.5 for 18 weeks. Thereafter,
BACKGROUND
Magnesium (Mg)-deficiency is one of the most prevalent physiological disorders causing a reduction in Citrus yield and quality. 'Xuegan' (Citrus sinensis) seedlings were irrigated for 16 weeks with nutrient solution containing 2 mM (Mg-sufficiency) or 0 mM
Two dimensional gel electrophoresis combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to study the somatic embryogenesis (SE) in Valencia sweet orange (Citrus sinensis Osbeck). Twenty-four differentially expressed proteins were
Glutathione S-transferases (GSTs) (EC 2.5.1.18) are ubiquitous enzymes that have a defined role in xenobiotic detoxification, but a deeper knowledge of their function in endogenous metabolism is still lacking. In this work, we isolated the cDNAs as well as the genomic clones of orange GSTs. Having
BACKGROUND
Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their
Citrus are mainly grown in low pH soils with high active aluminum (Al). 'Xuegan' (Citrus sinensis (L.) Osbeck) and 'Shatian pummelo' (Citrus grandis (L.) Osbeck) seedlings were fertilized for 18 weeks with nutrient solution containing either 0 mM (control) or 1 mM (Al toxicity) AlCl3·6H2O. Aluminum
Glutathione S-transferases (GSTs) represent a multifunctional family of enzymes grouped into four main classes (tau, phi, theta, and zeta) conjugating endobiotic and xenobiotic compounds to glutathione. In plants, this is considered to be a crucial step in the detoxification process as the
Plant metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis; however, related information in citrus plants is limited. Citrus genome sequencing and assembly have enabled us to perform a systematic analysis of the MTP gene family. We identified 12 MTP genes in sweet orange,
BACKGROUND
Rare data are available on the molecular responses of higher plants to low pH. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were treated daily with nutrient solution at a pH of 2.5, 3, or 6 (control) for nine months. Thereafter, we first used 2-dimensional
Citrus are sensitive to boron (B)-toxicity. In China, B-toxicity occurs in some citrus orchards. So far, limited data are available on B-toxicity-responsive proteins in higher plants. Thirteen-week-old seedlings of "Sour pummelo" (Citrus grandis) and "Xuegan" (Citrus sinensis) was fertilized every
Limited data are available on boron (B)-toxicity-responsive proteins in plants. We first applied 2-dimensional electrophoresis (2-DE) to compare the effects of B-toxicity on leaf protein profiles in B-tolerant Citrus sinensis and B-intolerant Citrus grandis seedlings, and identified 27 (20) protein
Aluminum (Al) treatment significantly decreased the dry weight (DW) of stem, shoot and whole plant of both Citrus sinensis and C. grandis, but did not change that of root. Al significantly decreased leaf DW of C. grandis, increased the ratio of root to shoot and the lignin
Here, we provide the data from a comparative proteomics approach used to investigate the response of boron (B)-tolerant 'Xuegan' (Citrus sinensis) and B-intolerant 'Sour pummelo' (Citrus grandis) leaves to B-toxicity. Using two-dimensional gel electrophoresis (2-DE) technique, we identified 50 and
BACKGROUND
Limited information is available on aluminum (Al)-toxicity-responsive proteins in woody plant roots. Seedlings of 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) were treated for 18 weeks with nutrient solution containing 0 (control) or 1.2 mM AlCl3 · 6H2O (+Al).
Manganese (Mn)-intolerant 'Sour pummelo' (Citrus grandis) and Mn-tolerant 'Xuegan' (Citrus sinensis) seedlings were irrigated for 17 weeks with 2 (control) or 600μM (Mn-toxicity or -excess) MnSO4. C. sinensis had higher Mn-tolerance than C. grandis, as indicated by the higher photosynthesis rates in