11 вынікі
Biotic stress in plants frequently induces a hypersensitive response (HR). This distinctive reaction has been studied intensively in several pathosystems and has shed light on the biology of defence signalling. Compared with microbial pathogens, relatively little is known about the role of the HR in
Diseases caused by Xylella fastidiosa are among the most destructive for several agricultural productions. A deadly disease of olive, termed olive quick decline syndrome, is one of the most recent examples of the severe impacts caused by the introduction and spread of this bacterium in new
Alfalfa (Medicago sativa L.) is commonly used as a traditional medicine and functional food. This study investigated the anti-inflammatory potential of alfalfa and the mechanisms involved. The chloroform extract of alfalfa aerial parts inhibited lipopolysaccharide (LPS)-stimulated immune responses
The diploid annual legume Medicago truncatula has been developed as a tractable genetic system for studying biological questions that are unique to, or well suited for study in legume species. An efficient mutagenesis protocol using ethyl-methyl sulfonate and a polymorphic ecotype with properties
BACKGROUND
Aluminum (Al) toxicity is an important factor limiting crop production on acid soils. However, little is known about the mechanisms by which legumes respond to and resist Al stress. To explore the mechanisms of Al toxicity and resistance in legumes, we compared the impact of Al stress in
Aphids, including the bluegreen aphid (BGA; Acyrthosiphon kondoi), are important pests in agriculture. Two BGA resistance genes have been identified in the model legume Medicago truncatula, namely AKR (Acyrthosiphon kondoi resistance) and AIN (Acyrthosiphon induced necrosis). In this study, progeny
Suppression of innate immunity is essential for rhizobial infection and colonization in compatible interactions with leguminous plants. In Medicago nad1 mutant plants, innate immunity is excessively activated, resulting in necrotic cell death after rhizobia are released from infection threads into
Alfalfa (Medicago sativa) plantlets were exposed to Cd or Hg to study the kinetics of diverse stress indexes. In the so-called beaker-size hydroponic system, plantlets were grown in 30 microM of Cd or Hg for 7 d. Oxidative stress took place and increased over time, a linear response being observed
Aphids are a major family of plant insect pests. Medicago truncatula and Acyrthosiphon pisum (pea aphid, PA) are model species with a suite of resources available to help dissect the mechanism underlying plant-aphid interactions. A previous study focused on monogenic and relatively strong resistance
CONCLUSIONS
Our study highlights the use of the DNA repair gene MtTdp2α as a tool for improving the plant response to heavy metal stress. Tyrosyl-DNA phosphodiesterase 2 (Tdp2), involved in the removal of DNA topoisomerase II-mediated DNA damage and cell proliferation/differentiation signalling in
Aphid-plant interactions depend on genotypes of both organisms, which determine the two-way molecular exchange that leads to compatible or incompatible outcomes. The underlying genes are mostly unknown, making it difficult to predict likelihood of aphid success or host resistance, and hampering crop