5 вынікі
Self-Incompatibility (SI) is a genetically controlled mechanism that prevents self-fertilisation and thus encourages outbreeding and genetic diversity. During pollination, most SI systems utilise cell-cell recognition to reject incompatible pollen. Mechanistically, one of the best-studied SI systems
Sexual reproduction in higher plants uses pollination, involving interactions between pollen and pistil. Self-incompatibility (SI) prevents self-fertilization, providing an important mechanism to promote outbreeding. SI is controlled by the S-locus; discrimination occurs between incompatible pollen,
Caspase-like proteases are universal mediators of programmed cell death (PCD). Because plants have no caspase homologs, establishing the nature of their caspase-like activities is of considerable importance to our understanding of PCD in plants. Caspase-3, displaying DEVD specificity, is a key
OBJECTIVE
Sexual reproduction in angiosperms involves a network of signalling and interactions between pollen and pistil. To promote out-breeding, an additional layer of interactions, involving self-incompatibility (SI), is used to prevent self-fertilization. SI is generally controlled by the
Programmed cell death (PCD) is an important and universal process regulating precise death of unwanted cells in eukaryotes. In plants, the existence of PCD has been firmly established for about a decade, and many components shown to be involved in apoptosis/PCD in mammalian systems are found in