Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Surgical Research 2018-May

Activation of mammalian target of rapamycin induces lipid accumulation in the diaphragm of ventilated rats and hypoxia-treated C2C12 cells.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Tao Yu
Mengli Wang
Yadong Wen
Yingya Cao
Guanggui Shen
Xiaogan Jiang
Jingyi Wu
Weihua Lu
Xiaoju Jin

Ключови думи

Резюме

BACKGROUND

Our previous study demonstrated that ventilators increase diaphragmatic lipid accumulation in rabbits, but their cellular mechanism is poorly understood. Mammalian target of rapamycin (mTOR) plays an important role in atherosclerosis in rat vascular smooth muscle cells. The present study investigated the role of mTOR pathway activation in the diaphragmatic muscle of ventilated rats and hypoxia-induced C2C12 cells.

METHODS

Male Sprague-Dawly rats were randomized into a control group (n = 8), controlled mechanical ventilation (CMV) group (n = 8), and CMV + Rapa group (n = 8). We evaluated the diaphragmatic contractility, lipid accumulation, and protein expression of the mTOR pathways. To explore the mechanism underlying ventilator-induced lipid accumulation, we observed protein expression of the mTOR and low-density lipoprotein receptor (LDLr) pathways in C2C12 cells under hypoxic and mTOR pathway inhibitor treatments.

RESULTS

Compared with the control group, there was a significant decrease in the peak twitch and peak tetanic forces in the CMV group (384.24 ± 70.39 versus 496.33 ± 78.64 g/cm2, P < 0.05, and 869.24 ± 76.67 versus 1090.72 ± 118.91 g/cm2, P < 0.05, respectively). There was a significant increase in peak twitch and peak tetanic forces in the CMV + Rapa group compared with that in the CMV group (501.81 ± 23.15 versus 384.24 ± 70.39 g/cm2, P < 0.05, and 992.91 ± 88.99 versus 869.24 ± 76.67 g/cm2, P < 0.05, respectively). In the CMV group, there were significant increases in lipid accumulation (0.086 ± 0.009 versus 0.005 ± 0.002, P < 0.05) and expression of mTOR in diaphragmatic fibers compared with those in the control group (P < 0.05). Rapamycin prevented lipid accumulation in rats of the CMV + Rapa group compared with that in the CMV group rats (0.024 ± 0.004 versus 0.086 ± 0.009, P < 0.05). Compared with the CMV group, there was a significant decrease in the phosphorylated protein expression levels of mTOR in rats of the CMV + Rapa group (P < 0.05). Hypoxic conditions activated the mTOR and LDLr pathways in C2C12 cells, which were correlated with an increase in expression of the mTOR and LDLr pathways compared with the control group (P < 0.05). In C2C12 cells treated with hypoxia + rapamycin, activation of the mTOR and LDLr pathways was blocked compared with C2C12 cells treated with hypoxia (P < 0.05).

CONCLUSIONS

These data suggest that CMV and hypoxia-induced activation of the mTOR pathway, resulting in lipid accumulation, and impaired the diaphragmatic contractile function. Therefore, pharmacologic agents that inhibit the mTOR pathway could potentially be useful for mitigating the diaphragmatic contractile dysfunction induced by mechanical ventilation.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge