Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicon 2018-Aug

Advances in the characterization of the Scorpaena plumieri cytolytic toxin (Sp-CTx).

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Pedro F Malacarne
Thiago N Menezes
Cleciane W Martins
Gustavo B Naumann
Helena L Gomes
Rita G W Pires
Suely G Figueiredo
Fabiana V Campos

Ключови думи

Резюме

Proteins that account for the hemolytic activity found in scorpaeniform fish venoms are responsible for the majority of the effects observed upon envenomation, for instance, neurotoxic, cardiotoxic and inflammatory effects. These multifunctional toxins, described as protein lethal factors and referred to as cytolysins, are known to be extremely labile molecules. In the present work, we endeavored to overcome this constraint by determining optimal storage conditions for Sp-CTx, the major bioactive component from the scorpionfish Scorpaena plumieri venom. This cardiotoxic hemolytic cytolysin is a large dimeric glycoprotein (subunits of ≈65 kDa) with pore-forming ability. We were able to establish storage conditions that allowed us to keep the toxin partially active for up to 60 days. Stability was achieved by storing Sp-CTx at -80 and -196 °C in the presence of glycerol 10% in a pH 7.4 solution. It was demonstrated that the hemolytic activity of Sp-CTx is calcium dependent, being abolished by EDTA and zinc ions. Furthermore, the toxin exhibited its maximal hemolytic activity at pH between 8 and 9, displaying typical N- and O- linked glycoconjugated residues (galactose (1-4) N-acetylglucosamine and sialic acid (2-3) galactose in N- and/or O-glycan complexes). The hemolytic activity of Sp-CTx was inhibited by phosphatidylglycerol and phosphatidylethanolamine, suggesting a direct electrostatic interaction lipid - toxin in the pore-formation mechanism of action of this toxin. In addition, we observed that the hemolytic activity was inhibited by increasing doses of cholesterol. Finally, we were able to show, for first time, that Sp-CTx is at least partially responsible for the pain and inflammation observed upon envenomation. However, while the edema induced by Sp-CTx was reduced by pre-treatment with aprotinin and HOE-140, pointing to the involvement of the kallikrein-kinin system in this response, these drugs had no significant effect in the toxin-induced nociception. Taken together, our results could suggest that, as has been already reported for other fish cytolysins, Sp-CTx acts mostly through lipid-dependent pore formation not only in erythrocytes but also in other cell types, which could account for the pain observed upon envenomation. We believe that the present work paves the way towards the complete characterization of fish cytolysins.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge