Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Endocrinology 2000-Mar

An increased intraovarian synthesis of nerve growth factor and its low affinity receptor is a principal component of steroid-induced polycystic ovary in the rat.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
H E Lara
G A Dissen
V Leyton
A Paredes
H Fuenzalida
J L Fiedler
S R Ojeda

Ключови думи

Резюме

A form of polycystic ovary (PCO) resembling some aspects of the human PCO syndrome can be induced in rats by a single injection of estradiol valerate (EV). An increase in sympathetic outflow to the ovary precedes, by several weeks, the appearance of cysts, suggesting the involvement of a neurogenic component in the pathology of this ovarian dysfunction. The present study was carried out to test the hypotheses that this change in sympathetic tone is related to an augmented production of ovarian nerve growth factor (NGF), and that this abnormally elevated production of NGF contributes to the formation of ovarian cysts induced by EV. Injection of the steroid resulted in increased intraovarian synthesis of NGF and its low affinity receptor, p75 NGFR. The increase was maximal 30 days after EV, coinciding with the elevation in sympathetic tone to the ovary and preceding the appearance of follicular cysts. Intraovarian injections of the retrograde tracer fluorogold combined with in situ hybridization to detect tyrosine hydroxylase (TH) messenger RNA-containing neurons in the celiac ganglion revealed that these changes in NGF/p75 NGFR synthesis are accompanied by selective activation of noradrenergic neurons projecting to the ovary. The levels of RBT2 messenger RNA, which encodes a beta-tubulin presumably involved in slow axonal transport, were markedly elevated, indicating that EV-induced formation of ovarian cysts is preceded by functional activation ofceliac ganglion neurons, including those innervating the ovary. Intraovarian administration of a neutralizing antiserum to NGF in conjunction with an antisense oligodeoxynucleotide to p75 NGFR, via Alzet osmotic minipumps, restored estrous cyclicity and ovulatory capacity in a majority of EV-treated rats. These functional changes were accompanied by restoration of the number of antral follicles per ovary that had been depleted by EV and a significant reduction in the number of both precystic follicles and follicular cysts. The results indicate that the hyperactivation of ovarian sympathetic nerves seen in EV-induced PCO is related to an overproduction of NGF and its low affinity receptor in the gland. They also suggest that activation of this neurotrophic-neurogenic regulatory loop is a component of the pathological process by which EV induces cyst formation and anovulation in rodents. The possibility exists that a similar alteration in neurotrophic input to the ovary contributes to the etiology and/or maintenance of the PCO syndrome in humans.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge