Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2011-Oct

Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Hsin-Mei Ku
Chi-Chieh Hu
Hui-Ju Chang
Yu-Tsung Lin
Fuh-Jyh Jan
Chien-Teh Chen

Ключови думи

Резюме

Proline accumulation is responsible for stress adaptation in many plants. To distinguish the involvement of two proline synthetic pathways, the virus induced gene silencing (VIGS) system that silenced the expression of genes encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC:1.5.1.12) and ornithine-δ-aminotransferase (OAT; EC 2.6.1.13) was performed, separately or concomitantly, in four-week-old Nicotiana benthamiana. Leaf discs of VIGS-treated tobacco were subjected to the treatment of drought, abscisic acid (ABA), or polyethylene glycol (PEG). The treated leaf discs were then collected for the determination of mRNA, chlorophyll, proline and polyamine level. Under drought stress or PEG treatment, most proline accumulation was inhibited in P5CS-silenced plants and only a small portion was inhibited in OAT-silenced plants under drought stress and no inhibition was observed under PEG treatment. Under ABA treatment, proline accumulation was inhibited completely in P5CS-silenced plants but unaffected in OAT-silenced plants. The degradation of chlorophyll was enhanced in P5CS-silenced plants but retarded in OAT-silenced plants under PEG treatment. Under ABA treatment, the degradation of chlorophyll was unaffected in both P5CS-silenced and OAT-silenced plants. The increase of polyamine level was unaffected in P5CS-silenced plants but increased in OAT-silenced plants under PEG treatment. Under ABA treatment, the increase of polyamine level was unaffected in P5CS-silenced plants but the polyamine level was increased later in OAT-silenced plants. Therefore, P5CS plays a major role in proline accumulation under drought, PEG, or ABA treatment, while OAT plays a minor role in drought or PEG treatment and does not participate in ABA treatment. OAT appears to have a close relationship with the regulation of polyamine levels in PEG and ABA treatments.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge