Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Otology and Neurotology 2004-Mar

Attenuation of cerebral oxygen toxicity by sound conditioning.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Avi Shupak
Dror Tal
Hillel Pratt
Zohara Sharoni
Ayala Hochman

Ключови думи

Резюме

OBJECTIVE

Sound conditioning might reduce cerebral oxygen toxicity.

BACKGROUND

Cerebral oxygen toxicity is related to high levels of reactive oxygen species. Noise-induced hearing loss has been shown to result from ischemia-reperfusion, in which reactive oxygen species play a major role. Repeated exposure to loud noise at levels below that which produces permanent threshold shift prevented noise-induced hearing loss and was associated with significant elevation of the antioxidant enzymes measured in the inner ear. We tested the hypothesis that sound conditioning might reduce cerebral oxygen toxicity.

METHODS

Forty-five guinea pigs were prepared for electroencephalography and auditory brainstem recording. The auditory brainstem recording detection threshold was determined to confirm baseline normal hearing. The animals were divided into three equal groups and subjected to the following procedures: Group 1, electroencephalography electrode implantation and auditory brainstem recording only; Group 2, exposure to oxygen at 608 kPa (the latency to the first electrical discharge in the electroencephalogram preceding the appearance of seizures was measured); and Group 3, sound conditioning followed by oxygen exposure. The animals were killed, and the brains were excised and homogenized. Brain levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione transferase, glutathione reductase, glucose-6-phosphate dehydrogenase, and thiobarbituric acid reactive substances were compared among the groups.

RESULTS

Latency to the first electrical discharge was compared between Groups 2 and 3, and was found to be significantly longer in Group 3 (27.9 +/- 11 versus 20.4 +/- 7.6 min, p < 0.03). No significant changes were found in brain levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione transferase, glutathione reductase, glucose-6-phosphate dehydrogenase, or thiobarbituric acid reactive substances.

CONCLUSIONS

Our data show that sound conditioning prolongs the latency to oxygen-induced convulsions. This effect was not accompanied by significant changes in whole-brain antioxidant enzyme activity or the magnitude of lipid peroxidation.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge