Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2002-Nov

Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Jay J Thelen
John B Ohlrogge

Ключови думи

Резюме

To further characterize the role of biotin carboxyl carrier protein isoform 2 (BCCP2) in acetyl-coenzyme A carboxylase (ACCase) function and fatty acid biosynthesis, plants with reduced or increased expression of this protein were characterized. Analysis of 38 independent Arabidopsis lines expressing antisense BCCP2 transcript behind a constitutive promoter showed no significant phenotype, though antisense transcript was highly expressed. In developing seed, BCCP2 protein was reduced by an average of 38% resulting in a 9% average decrease in fatty acid content in mature seed. Over-expression of BCCP2 behind a seed-specific napin promoter increased the amount of holo-BCCP2 in developing seed by an average of twofold, as determined with anti-biotin antibodies. Surprisingly, the average fatty acid content of T2 seed from over-expression lines was 23% lower than wild-type seed. These plants also exhibited reduced seed setting in 18 of 20 T1 lines which was coincident with increased individual seed mass. Quantification of total BCCP2 in developing siliques using anti-BCCP2 antibodies indicated that as much as 60% of total plastidial BCCP2 was in the non-biotinylated form (apo-BCCP2). Although apo-BCCP2 was highly over-expressed in developing seed, accumulation of other ACCase subunits was unaffected. The specific activity of ACCase was up to 65% lower in developing seed of over-expression lines versus wild type. This was attributed to the assembly of biologically inactive (non-biotinylated) ACCase complexes. Consistent with ACCase exerting control over de novo fatty acid synthesis, reduced activity in developing seed resulted in lower oil content, altered fatty acid composition and reduced seed setting.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge