Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2000-Feb

Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum). II. Assessment of control coefficients of the triose phosphate/phosphate translocator.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
R E Häusler
N H Schlieben
U I Flügge

Ключови думи

Резюме

Transgenic tobacco (Nicotiana tabacum L.) plants with decreased and increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were used to study the control the TPT exerts on the flux of starch and sucrose biosynthesis, as well as CO2 assimilation, respiration and photosynthetic electron transport. For this purpose, tobacco lines with an antisense repression of the endogenous TPT (alphaTPT) and tobacco lines overexpressing a TPT gene from Flaveria trinervia (FtTPT) were used. In ambient CO2, there was no or little effect of altered TPT transport activities on either rates of photosynthetic electron transport and/or CO2 assimilation. However, in elevated CO2 (1500 microl x 1(-1)) and low O2 (2%) the TPT exerted strong control on the rate of CO2 assimilation (control coefficient for the wild type; C(J(A))(TPT) = 0.30) in saturating light. Similarly, the incorporation of 14C into starch in high CO2 was increased in tobacco plants with decreased TPT activity, but was reduced in plants overexpressing the TPT from F. trinervia. Thus, the TPT exerted negative control on the rate of starch biosynthesis with a C(J(Starch))(TPT) = -0.19 in the wild type estimated from a hyperbolic curve fitted to the data points. This was less than the positive control strength on the rate of sucrose biosynthesis (C(J(Suc))(TPT) = 0.35 in the wild type). Theoretically, the positive control exerted on sucrose biosynthesis should be numerically identical to the negative control on starch biosynthesis unless additional metabolic pathways are affected. The rate of dark respiration showed some correlation with the TPT activity in that it increased in FtTPT overexpressors, but decreased in alphaTPT plants with an apparent control coefficient of C(J(Res))(TPT) = 0.24. If the control on sucrose biosynthesis is referred to as "gain of carbon" (positive control) and the control on starch biosynthesis as well as dark respiration as a "loss of carbon" (negative control) for sucrose biosynthesis and subsequent export, the sum of the control coefficients on dark respiration and starch biosynthesis would be numerically similar to the control coefficient on the rate of sucrose biosynthesis. There was also some control on the rate of photosynthetic electron transport, but only at high light and in elevated CO2 combined with low O2. The control coefficient for the rate of photosynthetic electron transport was C(J(ETR))(TPT) = 0.16 in the wild type. Control coefficients were also calculated for plants with elevated and lowered TPT activity. Furthermore, the extent to which starch degradation/glucose utilisation compensates for the lack of triose phosphate export was assessed. The TPT also exerted control on metabolite contents in air.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge