Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Materials Science: Materials in Medicine 2012-Aug

Hematoma-inspired alginate/platelet releasate/CaPO4 composite: initiation of the inflammatory-mediated response associated with fracture repair in vitro and ex vivo injection delivery.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Jonathan D McCanless
Lisa K Jennings
Joel D Bumgardner
Judith A Cole
Warren O Haggard

Ключови думи

Резюме

A clinical need continues for consistent bone remodeling within problematic sites such as those of fracture nonunion, avascular necrosis, or irregular bone formations. In attempt to address such needs, a biomaterial system is proposed to induce early inflammatory responses after implantation and to provide later osteoconductive scaffolding for bone regeneration. Biomaterial-induced inflammation would parallel the early stage of hematoma-induced fracture repair and allow scaffold-promoted remodeling of osseous tissue to a healthy state. Initiation of the wound healing cascade by two human concentrated platelet releasate-containing alginate/β-tricalcium phosphate biocomposites has been studied in vitro using the TIB-71™ RAW264.7 mouse monocyte cell line. Inflammatory responses inherent to the base material were found and could be modulated through incorporation of platelet releasate. Differences in hydrogel wt% (2 vs. 8 %) and/or calcium phosphate granule vol.% (20 vs. 10 %) allowed for tuning the response associated with platelet releasate-associated growth factor elution. Tunability from completely suppressing the inflammatory response to augmenting the response was observed through varied elution profiles of both releasate-derived bioagents and impurities inherent to alginate. A 2.5-fold upregulation of inducible-nitric oxide synthase gene expression followed by a tenfold increase in nitrite media levels was induced by inclusion of releasate within the 8 wt%/10 vol.% formulation and was comparable to an endotoxin positive control. Whereas, near complete elimination of inflammation was seen when releasate was included within the 2 wt%/20 vol.% formulation. These in vitro results suggested tunable interactions between the multiple platelet releasate-derived bioagents and the biocomposites for enhancing hematoma-like fracture repair. Additionally, minimally invasive delivery for in situ curing of the implant system via injection was demonstrated in rat tail vertebrae using microcomputed tomography.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge