Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2009-Mar

How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in Phalaris arundinacea.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Bjorn J M Robroek
Erwin B Adema
Harry Olde Venterink
Lars Leonardson
Martin J Wassen

Ключови думи

Резюме

Conservation and restoration of fens and fen meadows often aim to reduce soil nutrients, mainly nitrogen (N) and phosphorus (P). The biogeochemistry of P has received much attention as P-enrichment is expected to negatively impact on species diversity in wetlands. It is known that N, sulphur (S) and hydrological conditions affect the biogeochemistry of P, yet their interactive effects on P-dynamics are largely unknown. Additionally, in Europe, climate change has been predicted to lead to increases in summer drought. We performed a greenhouse experiment to elucidate the interactive effects of N, S and a single drought event on the P-availability for Phalaris arundinacea. Additionally, the response of plant phosphatase activity to these factors was measured over the two year experimental period. In contrast to results from earlier experiments, our treatments hardly affected soil P-availability. This may be explained by the higher pH in our soils, hampering the formation of Fe-P or Fe-Al complexes. Addition of S, however, decreased the plants N:P ratio, indicating an effect of S on the N:P stoichiometry and an effect on the plant's P-demand. Phosphatase activity increased significantly after addition of S, but was not affected by the addition of N or a single drought event. Root phosphatase activity was also positively related to plant tissue N and P concentrations, plant N and P uptake, and plant aboveground biomass, suggesting that the phosphatase enzyme influences P-biogeochemistry. Our results demonstrated that it is difficult to predict the effects of wetland restoration, since the involved mechanisms are not fully understood. Short-term and long-term effects on root phosphatase activity may differ considerably. Additionally, the addition of S can lead to unexpected effects on the biogeochemistry of P. Our results showed that natural resource managers should be careful when restoring degraded fens or preventing desiccation of fen ecosystems.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge