Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Biomaterialia 2019-Mar

In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Jianing Liu
Yulin Lin
Dong Bian
Ming Wang
Zefeng Lin
Xiao Chu
Wenting Li
Yang Liu
Zhenquan Shen
Yinong Liu

Ключови думи

Резюме

Proper alloying magnesium with element scandium (Sc) could transform its microstructure from α phase with hexagonal closed-packed (hcp) structure into β phase with body-cubic centered (bcc) structure. In the present work, the Mg-30 wt% Sc alloy with single α phase, dual phases (α + β) or β phase microstructure were developed by altering the heat-treatment routines and their suitability for usage within bone was comprehensively investigated. The β phased Mg-30 wt% Sc alloy showed the best mechanical performance with ultimate compressive strength of 603 ± 39 MPa and compressive strain of 31 ± 3%. In vitro degradation test showed that element scandium could effectively incorporate into the surface corrosion product layer, form a double-layered structure, and further protect the alloy matrix. No cytotoxic effect was observed for both single α phased and β phased Mg-30 wt% Sc alloys on MC3T3 cell line. Moreover, the β phased Mg-30 wt%Sc alloy displayed acceptable corrosion resistance in vivo (0.06 mm y-1) and maintained mechanical integrity up to 24 weeks. The degradation process did not significantly influence the hematology indexes of inflammation, hepatic or renal functions. The bone-implant contact ratio of 75 ± 10% after 24 weeks implied satisfactory integration between β phased Mg-30 wt%Sc alloy and the surrounding bone. These findings indicate a potential usage of the bcc-structured Mg-Sc alloy within bone and might provide a new strategy for future biomedical magnesium alloy design. STATEMENT OF SIGNIFICANCE: Scandium is the only rare earth element that can transform the matrix of magnesium alloy into bcc structure, and Mg-30 wt%Sc alloy had been recently reported to exhibit shape memory effect. The aim of the present work is to study the feasibility of Mg-30 wt%Sc alloy with different constitutional phases (single α phase, single β phase or dual phases (α + β)) as biodegradable orthopedic implant by in vitro and in vivo testings. Our findings showed that β phased Mg-30 wt%Sc alloy which is of bcc structure exhibited improved strength and superior in vivo degradation performance (0.06 mm y-1). No cytotoxicity and systematic toxicity were shown for β phased Mg-30 wt%Sc alloy on MC3T3 cell model and rat organisms. Moreover, good osseointegration, limited hydrogen gas release and maintained mechanical integrity were observed after 24 weeks' implantation into the rat femur bone.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge