Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2019-Sep

Metabolomics and physiological analyses reveal β-sitosterol as an important plant growth regulator inducing tolerance to water stress in white clover.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Zhou Li
Bizhen Cheng
Bin Yong
Ting Liu
Yan Peng
Xinquan Zhang
Xiao
Linkai Huang
Wei Liu
Gang Nie

Ключови думи

Резюме

β-sitosterol influences amino acids, carbohydrates, organic acids, and other metabolite metabolism and homeostasis largely contributing to better tolerance to water stress in white clover. β-sitosterol (BS) could act as an important plant growth regulator when plants are subjected to harsh environmental conditions. Objective of this study was to examine effects of BS on growth and water stress tolerance in white clover based on physiological responses and metabolomics. White clover was pretreated with or without BS and then subjected to water stress for 7 days in controlled growth chambers. Physiological analysis demonstrated that exogenous application of BS (120 μM) could significantly improve stress tolerance associated with better growth performance and photosynthesis, higher leaf relative water content, and less oxidative damage in white clover in response to water stress. Metabolic profiling identified 78 core metabolites involved in amino acids, organic acids, sugars, sugar alcohols, and other metabolites in leaves of white clover. For sugars and sugar alcohol metabolism, the BS treatment enhanced the accumulation of fructose, glucose, maltose, and myo-inositol contributing to better antioxidant capacity, growth maintenance, and osmotic adjustment in white clover under water stress. The application of BS was inclined to convert glutamic acid into proline, 5-oxoproline, and chlorophyll instead of going to pyruvate and alanine; the BS treatment did not significantly affect intermediates of tricarboxylic acid cycle (citrate, aconitate, and malate), but promoted the accumulation of other organic acids including lactic acid, glycolic acid, glyceric acid, shikimic acid, galacturonic acid, and quinic acid in white clover subjected to water stress. In addition, cysteine, an important antioxidant metabolite, was also significantly improved by BS in white clover under water stress. These altered amino acids and organic acids metabolism could play important roles in growth maintenance and modulation of osmotic and redox balance against water stress in white clover. Current findings provide a new insight into BS-induced metabolic homeostasis related to growth and water stress tolerance in plants.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge