Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 1970-Sep

Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
H S Johnson
M D Hatch

Ключови думи

Резюме

1. NADP-malate dehydrogenase and ;malic' enzyme in maize leaf extracts were separated from NAD-malate dehydrogenase and their properties were examined. 2. The NADP-malate dehydrogenase was nicotinamide nucleotide-specific but otherwise catalysed a reaction comparable with that with the NAD-specific enzyme. By contrast with the latter enzyme, a thiol was absolutely essential for maintaining the activity of the NADP-malate dehydrogenase, and the initial velocity in the direction of malate formation, relative to the reverse direction, was faster. 3. For the ;malic' enzyme reaction the K(m) for malate was dependent on pH and the pH optimum varied with the malate concentration. At their respective optimum concentrations the maximum velocity for this enzyme was higher with Mg(2+) than with Mn(2+). 4. The NADP-malate dehydrogenase in green leaves was rapidly inactivated in the dark and was reactivated when plants were illuminated. Reactivation of the enzyme extracted from darkened leaves was achieved simply by adding a thiol compound. 5. The activity of both enzymes was low in etiolated leaves of maize plants grown in the dark but increased 10-20-fold, together with chlorophyll, when leaves were illuminated. 6. The activity of these enzymes in different species with the C(4)-dicarboxylic acid pathway was compared and their possible role in photosynthesis was considered.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge