Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2016-Jan

Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Domingo Martínez-Fernández
Didac Barroso
Michael Komárek

Ключови думи

Резюме

The application of nanomaterials in commercially available products is increasing rapidly for agriculture, phytoremediation and biotechnology. Since plants suppose the first sink for the accumulation of nanoparticles from the environment, emerging studies have focused on the general consequences for plants and their effects on the biomass production. However, effects on the root surface, as well as blockage of nutrients and water uptake by the roots, may also occur. This experiment was designed to prove if the plant water relations can be affected by the adsorption of nanoparticles on the root surface, causing a consequent stress for the plants. With this goal, plants of Helianthus annuus were previously grown in a hydroponic culture, and at age of 55 days, their roots were exposed to three different concentrations of nanomaghemite (NM) in the hydroponic solution for 5 days: control without NM; 50 and 100 mg l(-1) NM. The main effect was related to the reduction of the root hydraulic conductivity (Lo) and the nutrients uptake. The concentrations of the macronutrients Ca, K, Mg and S in the shoot were reduced relative to the control plants, which resulted in lower contents of chlorophyll pigments. Although stress was not detected in the plants, after the analysis of stress markers like the accumulation of proline or ascorbate in the tissues, reduction of the root functionality by nanoparticles has been identified here, manifested as the effect of NM on Lo. The treatment with 50 mg l(-1) NM significantly reduced the Lo, by up to 57% of its control value, and it was reduced by up to 26% at 100 mg l(-1) NM. These results will be an important factor to take into account with regard to the applicability of NM for long-term use in crops, particularly during privative water conditions.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge