Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Heart and Circulatory Physiology 2009-Jul

Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Sabrina Serpillon
Beverly C Floyd
Rakhee S Gupte
Shimran George
Mark Kozicky
Venessa Neito
Fabio Recchia
William Stanley
Michael S Wolin
Sachin A Gupte

Ключови думи

Резюме

Increased oxidative stress is a known cause of cardiac dysfunction in animals and patients with diabetes, but the sources of reactive oxygen species [e.g., superoxide anion (O(2)(-))] and the mechanisms underlying O(2)(-) production in diabetic hearts are not clearly understood. Our aim was to determine whether NADPH oxidase (Nox) is a source of O(2)(-) and whether glucose-6-phosphate dehydrogenase (G6PD)-derived NADPH plays a role in augmenting O(2)(-) generation in diabetes. We assessed cardiac function, Nox and G6PD activities, NADPH levels, and the activities of antioxidant enzymes in heart homogenates from young (9-11 wk old) Zucker lean and obese (fa/fa) rats. We found that myocardial G6PD activity was significantly higher in fa/fa than in lean rats, whereas superoxide dismutase and glutathione peroxidase activities were decreased (P < 0.05). O(2)(-) levels were elevated (70-90%; P < 0.05) in the diabetic heart, and this elevation was blocked by the Nox inhibitor gp-91(ds-tat) (50 microM) or by the mitochondrial respiratory chain inhibitors antimycin (10 microM) and rotenone (50 microM). Inhibition of G6PD by 6-aminonicotinamide (5 mM) and dihydroepiandrosterone (100 microM) also reduced (P < 0.05) O(2)(-) production. Notably, the activities of Nox and G6PD in the fa/fa rat heart were inhibited by chelerythrine, a protein kinase C inhibitor. Although we detected no changes in stroke volume, cardiac output, or ejection fraction, left ventricular diameter was slightly increased during diastole and systole, and left ventricular posterior wall thickness was decreased during systole (P < 0.05) in Zucker fa/fa rats. Our findings suggest that in a model of severe hyperlipidema and hyperglycemia Nox-derived O(2)(-) generation in the myocardium is fueled by elevated levels of G6PD-derived NADPH. Similar mechanisms were found to activate O(2)(-) production and induce endothelial dysfunction in aorta. Thus G6PD may be a useful therapeutic target for treating the cardiovascular disease associated with type 2 diabetes, if second-generation drugs specifically reducing the activity of G6PD to near normal levels are developed.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge