Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant 2009-May

The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Martin Lehmann
Markus Schwarzländer
Toshihiro Obata
Supaart Sirikantaramas
Meike Burow
Carl Erik Olsen
Takayuki Tohge
Mark D Fricker
Birger Lindberg Møller
Alisdair R Fernie

Ключови думи

Резюме

Metabolic adjustments are a significant, but poorly understood, part of the response of plants to oxidative stress. In a previous study (Baxter et al., 2007), the metabolic response of Arabidopsis cells in culture to induction of oxidative stress by menadione was characterized. An emergency survival strategy was uncovered in which anabolic primary metabolism was largely down-regulated in favour of catabolic and antioxidant metabolism. The response in whole plant tissues may be different and we have therefore investigated the response of Arabidopsis roots to menadione treatment, analyzing the transcriptome, metabolome and key metabolic fluxes with focus on primary as well as secondary metabolism. Using a redox-sensitive GFP, it was also shown that menadione causes redox perturbation, not just in the mitochondrion, but also in the cytosol and plastids of roots. In the first 30 min of treatment, the response was similar to the cell culture: there was a decrease in metabolites of the TCA cycle and amino acid biosynthesis and the transcriptomic response was dominated by up-regulation of DNA regulatory proteins. After 2 and 6 h of treatment, the response of the roots was different to the cell culture. Metabolite levels did not remain depressed, but instead recovered and, in the case of pyruvate, some amino acids and aliphatic glucosinolates showed a steady increase above control levels. However, no major changes in fluxes of central carbon metabolism were observed and metabolic transcripts changed largely independently of the corresponding metabolites. Together, the results suggest that root tissues can recover metabolic activity after oxidative inhibition and highlight potentially important roles for glycolysis and the oxidative pentose phosphate pathway.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge