Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental and Therapeutic Medicine 2017-Sep

Triptolide inhibits the function of TNF-α in osteoblast differentiation by inhibiting the NF-κB signaling pathway.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Shen-Peng Liu
Guo-Dong Wang
Xue-Jun Du
Guang Wan
Jun-Tao Wu
Lian-Bao Miao
Qiu-Dong Liang

Ключови думи

Резюме

Chronic inflammation often delays fracture healing or leads to bone nonunion. Effectively suppressing pathological inflammation is crucial for fracture healing or bone remodeling. Triptolide, which is a diterpenoid epoxide, is the major active component of the Thunder God Vine, Tripterygium wilfordii. The aim of the present study was to investigate the role of triptolide in osteoblast differentiation and explore the molecular mechanisms of triptolide in fracture healing. Alkaline phosphatase (ALP) activity was used to evaluate osteoblast differentiation. ALP activity was measured via histochemical staining and western blotting was used to determine the expression of factors associated with inflammation. C2C12 cells were initially treated with 200 ng/ml bone morphogenetic protein (BMP)-2 alone for 3 days, which caused a significant increase in ALP activity (P<0.01). However, treatment with tumor necrosis factor (TNF)-α significantly decreased the ALP activity (P<0.05). Notably, treatment with the chronic inflammatory cytokine TNF-α significantly decreased the effect of BMP-2 in C2C12 cells compared with BMP-2 treatment alone (P<0.01). C2C12 cells were treated with increasing concentrations of BMP-2 or TNF-α for 3 days. The results demonstrated that TNF-α treatment significantly inhibited BMP-2-induced osteoblast differentiation in a dose-dependent manner (P<0.01). The role of triptolide in BMP-2-induced osteoblast differentiation was also examined. Cells were treated with BMP-2, BMP-2 + TNF-α alone, or BMP2 + TNF-α with increasing concentrations of triptolide (4, 8 or 16 ng/ml). After 3 days, the results of ALP activity revealed that triptolide significantly reversed the TNF-α-associated inhibition of osteoblast differentiation (P<0.01). Western blotting analysis demonstrated that triptolide markedly inhibited the phosphorylation of nuclear factor-κB, therefore suppressing the effects of TNF-α. In summary, triptolide is able to reverse the TNF-α-associated suppression of osteoblast differentiation, suggesting that triptolide treatment may have a positive effect on bone remodeling and fracture repairing.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge