Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Steroid Biochemistry and Molecular Biology 2020-Apr

VITAMIN D REGULATION OF HAS2, HYALURONAN SYNTHESIS AND METABOLISM IN TRIPLE NEGATIVE BREAST CANCER CELLS.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
C Narvaez
D Grebenc
S Balinth
J Welsh

Ключови думи

Резюме

The vitamin D receptor (VDR) and its ligand 1,25(OH)2D3 (1,25D) exert anti-tumor effects, but considerable heterogeneity has been reported in different model systems. In general, cell lines derived from aggressive tumor subtypes such as Triple Negative Breast Cancer (TNBC) express low levels of VDR and are less sensitive to 1,25D than those derived from more differentiated tumor types. We have previously reported that 1,25D inhibits hyaluronic acid synthase 2 (HAS2) expression and hyaluronic acid (HA) synthesis in murine TNBC cells. Here we confirmed the inhibitory effect of 1,25D on HA synthesis in human Hs578 T cells representative of the mesenchymal/stem-like (MSL) subtype of TNBC. Because HA synthesis requires the production of hexoses for incorporation into HA, we predicted that the high HA production characteristic of Hs578 T cells would require sustained metabolic changes through the hexosamine biosynthetic pathway (HBP). We thus examined metabolic gene expression in Hs578 T cell variants sorted for High (HAHigh) and Low (HALow) HA production, and the ability of 1,25D to reverse these adaptive changes. HAHigh populations exhibited elevated HA production, smaller size, increased proliferation and higher motility than HALow populations. Despite their more aggressive phenotype, HAHigh populations retained expression of VDR protein at levels comparable to that of parental Hs578 T cells and HALow subclones. Treatment with 1,25D decreased production of HA in both HAHigh and HALow populations. We also found that multiple metabolic enzymes were aberrantly expressed in HAHigh cells, especially those involved in glutamine and glucose metabolism. Notably, Glutaminase (GLS), a known oncogene for breast cancer, was strongly upregulated in HAHigh vs. HALow cells and its expression was significantly reduced by 1,25D (100 nM, 24 h). Consistent with this finding, Seahorse extracellular flux analysis indicated that respiration in HAHigh cells was significantly more dependent on exogenous glutamine than HALow cells, however, acute 1,25D exposure did not alter metabolic flux. In contrast to GLS, the glutamate transporter SLC1A7 was significantly reduced in HAHigh cells compared to HALow cells and its expression was enhanced by 1,25D. These findings support the concept that 1,25D can reverse the metabolic gene expression changes associated with HA production in cancer cells with aggressive phenotypes.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge