Страница 1 от 3914 резултата
A novel anticancer pro-prodrug (GMC-CAE-NO2) with diagnosis and therapy functions based on hypoxia and photo sequential control was designed. It provides a platform for constructing theranostic pro-prodrugs to release active drugs controlled by hypoxic status and UV illumination.
Hypoxia is a hallmark of the tumor microenvironment, which promotes the proliferation, metastasis and invasion of tumors and stimulates the resistance of cancer treatments, leading to the serious consequence of tumor recurrence. Many nanotechnology-based studies have been conducted to improve the
Tumors often consist of hypoxic regions which are resistant to chemo- and radiotherapy. Evofosfamide (also known as TH-302), a 2-nitroimidazole triggered hypoxia-activated prodrug, preferentially releases the DNA cross-linker bromo-isophosphoramide mustard in hypoxic cells. The intracellular kinase
Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, hypoxia offers treatment opportunities, exemplified by the development of compounds that target hypoxic regions within tumors. Evofosfamide (TH-302) is a prodrug created by the conjugation of 2-nitroimidazole
Vascular disrupting agents (VDAs) have great potential in cancer treatment. However, in addition to their direct tumoral vascular collapse effect, VDAs activate host immunological responses, which can remarkably impair their anticancer efficacy. Here, a VDA nanomedicine, poly(l-glutamic
A novel anticancer theranostic prodrug, FDU-DB-NO2, specifically activated by hypoxia for selective two-photon imaging hypoxia status, real-time tracking drug release, and solid tumor therapy was designed. The devised prodrug consists of an anticancer drug floxuridine (FDU), a fluorescence dye
Lung cancer is one of the leading causes of cancer-associated mortality, worldwide. The overall survival rate remains low, but progress has been made in improving the diagnosis and treatment of lung cancer over the past decades. Niclosamide, a salicylanilide derivative used for the treatment of
Amphiphilic block copolymers poly(ethylene glycol)-block-poly(methacrylic acid-co-2-nitroimidazole methacrylate) (PEG-b-P(MAA-co-NIMA)) were synthesized by the combination of atom transfer radical polymerization (ATRP), hydrolysis and EDC reactions. These copolymers could self-assemble into
BACKGROUND
TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the
Tumor hypoxia contributes to the progression of a malignant phenotype and resistance to ionizing radiation and anticancer drug therapy. Many of these effects in hypoxic tumor cells are mediated by expression of specific set of genes whose relation to therapy resistance is poorly understood. In this
The introduction of a 3-alkyl substituent is a key step in the synthesis of 1,2,4-benzotriazine 1,4-dioxide hypoxia-selective anticancer agents, such as SN29751. The Stille reaction of 3-chloro-1,2,4-benzotriazine 1-oxides (BTOs) 5 was inhibited by the presence of electron donating substituents on
Quinoxaline 1,4-dioxides have a broad range of biological activity that causes a growing interest in their derivatives for drug discovery. Recent studies demonstrated that quinoxaline 1,4- dioxides have a promising anticancer activity and good Beta-L-dioxolane-cytidine (L-OddC; BCH-4556; troxacitabine), a novel L-configuration deoxycytidine analogue, was under clinical trials for treating cancer. The cytotoxicity of L-OddC is dependent on its phosphorylation to L-OddCTP by phosphoglycerate kinase (PGK) and its subsequent addition into
A series of aniline mustards with a wide range of electron-donating and -withdrawing substituents in the 3- and 4-positions has been synthesized and evaluated for cytotoxicity in cell culture to examine the potential of using nitro group deactivated nitrogen mustards for the design of novel
Nitro seco-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-ones (nitroCBIs) are a new class of prodrugs for antitumor therapy that undergo hypoxia-selective metabolism to form potent DNA minor groove alkylating agents. Although hindered by poor aqueous solubility, several examples have shown activity