Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cyanide/войничица

Линкът е запазен в клипборда
СтатииКлинични изследванияПатенти
Страница 1 от 90 резултата

Quinclorac resistance in Echinochloa phyllopogon is associated with reduced ethylene synthesis rather than enhanced cyanide detoxification by β-cyanoalanine synthase.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Multiple herbicide resistant Echinochloa phyllopogon exhibits resistance to the auxin herbicide quinclorac. Previous research observed enhanced activity of the cyanide-detoxifying enzyme β-cyanoalanine synthase (β-CAS) and reduced ethylene production in the resistant line, suggesting

Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Cyanide production has been reported from over 2500 plant species, including some members of the Brassicaceae. We report that the important invasive plant, Alliaria petiolata, produces levels of cyanide in its tissues that can reach 100 ppm fresh weight (FW), a level considered toxic to many

Arabidopsis sulfurtransferases: investigation of their function during senescence and in cyanide detoxification.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Sulfurtransferases (STs) and beta-cyano- l-alanine synthase (CAS) are suggested to be involved in cyanide detoxification. Therefore, the accumulation of ST1 and CAS RNAs, and the ST and CAS protein levels and enzyme activities were determined in Arabidopsis thaliana Heynh. plants grown under

Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
The volatile-mediated impact of bacteria on plant growth is well documented, and contrasting effects have been reported ranging from 6-fold plant promotion to plant killing. However, very little is known about the identity of the compounds responsible for these effects or the mechanisms involved in

Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme β-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide

Benzyl Cyanide Leads to Auxin-Like Effects Through the Action of Nitrilases in Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Plants within the Brassicales order generate glucosinolate hydrolysis products that can exert different biological effects on several organisms. Here, we evaluated the physiological effects of one of these compounds, benzyl cyanide (phenylacetonitrile), when exogenously applied on Arabidopsis

Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Cyanoalanine hydratase (E.C. 4.2.1.65) is an enzyme involved in the cyanide detoxification pathway of higher plants and catalyzes the hydrolysis of beta-cyano-L-alanine to asparagine. We have isolated the enzyme from seedlings of blue lupine (Lupinus angustifolius) to obtain protein sequence

Comparative transcriptome analysis reveals significant differences in the regulation of gene expression between hydrogen cyanide- and ethylene-treated Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Hydrogen cyanide (HCN) is a small gaseous molecule that is predominantly produced as an equimolar co-product of ethylene (ET) biosynthesis in plants. The function of ET is of great concern and is well studied; however, the function of HCN is largely unknown. Similar to ET, HCN is a

Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
The seeds of many plant species are dormant at maturity and dormancy loss is a prerequisite for germination. Numerous environmental and chemical treatments are known to lessen or remove seed dormancy, but the biochemical changes that occur during this change of state are poorly understood. Several

ß-Cyanoalanine Synthase Action in Root Hair Elongation is Exerted at Early Steps of the Root Hair Elongation Pathway and is Independent of Direct Cyanide Inactivation of NADPH Oxidase.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
In Arabidopsis thaliana, cyanide is produced concomitantly with ethylene biosynthesis and is mainly detoxified by the ß-cyanoalanine synthase CAS-C1. In roots, CAS-C1 activity is essential to maintain a low level of cyanide for proper root hair development. Root hair elongation relies on polarized

Heterologous expression analyses of rice OsCAS in Arabidopsis and in yeast provide evidence for its roles in cyanide detoxification rather than in cysteine synthesis in vivo.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
While most dicot plants produce little ethylene in their vegetative stage, many monocots such as rice liberate a relatively large amount of ethylene with cyanide as a co-product in their seedling stage when etiolated. One of the known functions of beta-cyanoalanine synthase (CAS) is to detoxify the

Characterization of the regulatory and expression context of an alternative oxidase gene provides insights into cyanide-insensitive respiration during growth and development.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Alternative oxidase (AOX) is encoded in small multigene families in plants. Functional analysis of the Arabidopsis (Arabidopsis thaliana) alternative oxidase 1c (AtAOX1c) promoter, an AOX gene not induced by oxidative stress, indicated that regulation of expression was complex, with the upstream

Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
The biosynthetic pathway for the production of phenylacetonitrile (PAN), which has a wide variety of uses in chemical and pharmaceutical industries, was constructed in Escherichia coli utilizing enzymes from the plant glucosinolate-biosynthetic and bacterial aldoxime-nitrile pathways. First, the

Heterologous expression of mitochondria-targeted microbial nitrilase enzymes increases cyanide tolerance in Arabidopsis.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Anthropogenic activities have resulted in cyanide (CN) contamination of both soil and water in many areas of the globe. While plants possess a detoxification pathway that serves to degrade endogenously generated CN, this system is readily overwhelmed, limiting the use of plants in bioremediation.

Effects of light on cyanide-resistant respiration and alternative oxidase function in Arabidopsis seedlings.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes the energy wasteful cyanide (CN)-resistant respiration and plays a role in optimizing photosynthesis. Although it has been demonstrated that leaf AOX is upregulated after illumination, the in vivo
Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge