Страница 1 от 93 резултата
Mitochondria isolated from etiolated shoots of corn (Zea mays), wheat (Triticum aestivum), barley (Hordeum vulgare), soybean (Glycine max L. Merr.), and mung bean (Phaseolus aureus) exhibited a proline-dependent O(2) uptake subject to respiratory control. ADP/O ratios with proline as substrate were
Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar l-[(14)C]proline at an initial rate of about 6.5 micromoles gram(-1) fresh weight hour(-1) (pH 5, 30 degrees C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via
In germinating grains of barley, Hordeum vulgare L. cv. Himalaya, free proline accumulated in the starchy endosperm during the period of rapid mobilization of reserve proteins. When starchy endosperms were separated from germinating grains and homogenized in a dilute buffer of pH 5 (the pH of the
When excised second leaves from 2-week-old barley (Hordeum vulgare var Larker) plants were incubated in a wilted condition, abscisic acid (ABA) levels increased to 0.6 nanomole per gram fresh weight at 4 hours then declined to about 0.3 nanomole per gram fresh weight and remained at that level until
The amino acid proline is accumulated in plant tissues in response to a variety of stresses. The existence of two routes for its biosynthesis is well documented. However, little is known about the contribution of each pathway to the accumulation of free proline under stress conditions. In the
The objective of these experiments was to determine the fate of tritium from the 5 position of proline and to assess the validity of its loss to H(2)O as a measure of proline oxidation. When [5-(3)H]proline was fed to barley (Hordeum vulgare) leaves, tritium was recovered in H(2)O and metabolites
The effect of light on [(14)C]glutamate conversion to free proline during water stress was studied in attached barley (Hordeum vulgare L.) leaves which had been trimmed to 10 cm in length. Plants at the three-leaf stage were stressed by flooding the rooting medium with polyethylene glycol 6000
Mobilization of N from leaves of barley (Hordeum vulgare L.) during water stress, and the role of proline as a mobilized species, were examined in plants at the three-leaf stage. The plants responded to water stress by withdrawing about 25% of the total reduced N from the leaf blades via phloem
The effect of wilting on proline synthesis, proline oxidation, and protein synthesis-all of which contribute to proline accumulation-was determined in nonstarved barley (Hordeum vulgare L.) leaves. Nonstarved leaves were from plants previously in the light for 24 hours and starved leaves were from
Five proline analogues were tested for inhibition of the growth of mature barley (Hordeum vulgare L.) embryos in sterile culture. Inhibition by all analogues was relieved by proline. Inhibition by trans-4-hydroxy-L-proline was relieved by low amounts of proline. Twenty thousand mature embryos were
The effect of various proline analogs on proline oxidation in mitochondria isolated from etiolated barley (Hordeum vulgare) shoots was investigated. Of the analogs tested, only l-thiazolidine-4-carboxylic acid (T4C) was an effective inhibitor. T4C (1 millimolar) inhibited proline (10 millimolar)
BACKGROUND
Land plants have evolved several measures to maintain their life against abiotic stresses. The accumulation of proline is the most generalized response of plants under drought, heat or salt stress conditions. It is known as an osmoprotectant which also acts as an instant source of energy
Barley (Hordeum vulgare cv Prior) leaves converted l-U-(14)C-arginine to labeled proline. Accumulation of radioactivity in proline was greater in wilted leaves, but only after 9 hours of incubation. As the increase in free proline was detectable after only 3 to 6 hours, it is likely that the
The conversion of proline to glutamic acid and hence to other soluble compounds (proline oxidation) proceeds readily in turgid barley (Hordeum vulgare) leaves and is stimulated by higher concentrations of proline. This suggests that proline oxidation could function as a control mechanism for
Elimination of celiac-toxic prolamin peptides and proteins is essential for Triticeae products to be gluten-free. Instead of enzymatic hydrolysis, in this study we investigated metal-catalyzed oxidation of two model peptides, QQPFP, and PQPQLPY, together with a hordein isolate from barley (Hordeum