Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phosphatidic acid/arabidopsis thaliana

Линкът е запазен в клипборда
СтатииКлинични изследванияПатенти
Страница 1 от 124 резултата

Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Phosphatidic acid (PA) is an important lipid signaling molecule which interacts with Arabidopsis thaliana Sphingosine kinase1 (AtSPHK1) during several abiotic stresses particularly drought stress as a result of Abscisic acid (ABA) signaling in guard cells. PA molecules respond by generating lipid

Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching

A predicted plastid rhomboid protease affects phosphatidic acid metabolism in Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
The thylakoid membranes of the chloroplast harbor the photosynthetic machinery that converts light into chemical energy. Chloroplast membranes are unique in their lipid makeup, which is dominated by the galactolipids mono- and digalactosyldiacylglycerol (MGDG and DGDG). The most abundant

Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of

Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
PA (phosphatidic acid) is a lipid second messenger involved in an array of processes occurring during a plant's life cycle. These include development, metabolism, and both biotic and abiotic stress responses. PA levels increase in response to salt, but little is known about its function in the

Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
• Phospholipase D (PLD) hydrolyzes phospholipids to produce phosphatidic acid (PA) and a head group, and is involved in the response to various environmental stresses, including salinity. Here, we determined the roles of PLDα and PA in the mediation of salt (NaCl)-stress signaling through the

An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Phosphatidic acid (PA) functions as a lipid signaling molecule in plants. Physiological analysis showed that PA triggers early signal transduction events that lead to responses to abscisic acid (ABA) during seed germination. We measured PA production during seed germination and found increased PA

Identification and characterization of the phosphatidic acid-binding A. thaliana phosphoprotein PLDrp1 that is regulated by PLDα1 in a stress-dependent manner.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Phospholipase D (PLD) and its cleavage product phosphatidic acid (PA) are crucial in plant stress-signalling. Although some targets of PLD and PA have been identified, the signalling pathway is still enigmatic. This study demonstrates that the phosphoprotein At5g39570, now called PLD-regulated

An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
UNASSIGNED Lipidomics plays an important role in understanding plant adaptation to different stresses and improving our knowledge of the genes underlying lipid metabolism. Lipidomics involves lipid extraction, sample preparation, mass spectrometry analysis, and data interpretation. One of the

Interaction and Regulation Between Lipid Mediator Phosphatidic Acid and Circadian Clock Regulators.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Circadian clocks play important roles in regulating cellular metabolism, but the reciprocal effect that metabolism has on the clock is largely unknown in plants. Here, we show that the central glycerolipid metabolite and lipid mediator phosphatidic acid (PA) interacts with and modulates the function

Functional Characterization of the N-Terminal C2 Domain from Arabidopsis thaliana Phospholipase Dα and Dβ.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Most of plant phospholipases D (PLD) exhibit a C2-lipid binding domain of around 130 amino acid residues at their N-terminal region, involved in their Ca2+-dependent membrane binding. In this study, we expressed and partially purified catalytically active PLDα from Arabidopsis thaliana (AtPLDα) in

Regulation of ABA-Non-Activated SNF1-Related Protein Kinase 2 Signaling Pathways by Phosphatidic Acid

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Phosphatidic acid (PA) is involved in the regulation of plant growth and development, as well as responses to various environmental stimuli. Several PA targets in plant cells were identified, including two SNF1-related protein kinases 2 (SnRK2s), SnRK2.10 and SnRK2.4, which are not activated by

Phosphatidic acids mediate transport of Ca2+ and H+ through plant cell membranes.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Phosphatidic acids (PAs) are a key intermediate in phospholipid biosynthesis, and a central element in numerous signalling pathways. Functions of PAs are related to their fundamental role in molecular interactions within cell membranes modifying membrane bending, budding, fission and fusion. Here we

Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Diacylglycerol pyrophosphate (DGPP) is a novel phospholipid that has been found in plants and yeast but not in higher animals. It is produced through phosphorylation of phosphatidic acid (PA) by the novel enzyme PA kinase (PAK). In plants, DGPP is virtually absent in non-stimulated cells but its

Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of
Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge