Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

physcomitrella/антиоксидант

Линкът е запазен в клипборда
СтатииКлинични изследванияПатенти
11 резултата

Physcomitrella Patens Dehydrins (PpDHNA and PpDHNC) Confer Salinity and Drought Tolerance to Transgenic Arabidopsis Plants.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Dehydrins (DHNs) as a member of late-embryogenesis-abundant (LEA) proteins are involved in plant abiotic stress tolerance. Two dehydrins PpDHNA and PpDHNC were previously characterized from the moss Physcomitrella patens, which has been suggested to be an ideal model plant to study stress tolerance

Transcriptome Analysis of ppdnmt2 and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss Physcomitrella patens

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
DNMT2 is a DNA/tRNA cytosine methyltransferase that is highly conserved in structure and function in eukaryotes. In plants however, limited information is available on the function of this methyltransferase. We have previously reported that in the moss Physcomitrella patens,

Bacteriocin release protein-mediated secretory expression of recombinant chalcone synthase in Escherichia coli.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Flavonoids are secondary metabolites synthesized by plants shown to exhibit health benefits such as anti-inflammatory, antioxidant, and anti-tumor effects. Thus, due to the importance of this compound, several enzymes involved in the flavonoid pathway have been cloned and characterized in

Long-term impact of cadmium in protonema cultures of Physcomitrella patens.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Antioxidative responses of axenic protonema cultures of the moss Physcomitrella patens exposed to 10 μM Cd over 40 d were studied. Cd treatment suppressed growth by ca. 75% with concomitant browning of some filaments and suppression of chlorophyll autofluorescence but had no impact on tissue water

PpAKR1A, a Novel Aldo-Keto Reductase from Physcomitrella Patens, Plays a Positive Role in Salt Stress.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
The moss Physcomitrella patens is tolerant of highly saline environments. In plants, salinity stress may induce the production of toxic reactive carbonyl species (RCS) and oxidative damage. Aldo-keto reductases (AKRs) are a large group of NADP-dependent oxidoreductases involved in RCS

Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens,

Proteomic analysis of the response to high-salinity stress in Physcomitrella patens.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Physcomitrella patens is well known because of its importance in the study of plant systematics and evolution. The tolerance of P. patens for high-salinity environments also makes it an ideal candidate for studying the molecular mechanisms by which plants respond to salinity stresses. We measured

Heterologous expression of HpBHY and CrBKT increases heat tolerance in Physcomitrella patens.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Heat stress can restrict plant growth, development, and crop yield. As essential plant antioxidants, carotenoids play significant roles in plant stress resistance. β-carotene hydroxylase (BHY) and β-carotene ketolase (BKT), which catalyze the conversions of β-carotene to zeaxanthin and β-carotene to

ABSCISIC ACID INSENSITIVE3 Is Involved in Cold Response and Freezing Tolerance Regulation in Physcomitrella patens.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Synopsis This work demonstrates that PpABI3 contributes to freezing tolerance regulation in Physcomitrella patens. Transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is known to play a major role in regulating seed dormancy, germination, seedling development as well as stress responses. ABI3 is

Comparison of the chloroplast peroxidase system in the chlorophyte Chlamydomonas reinhardtii, the bryophyte Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
BACKGROUND Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS), which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes

Conserved and differential transcriptional responses of peroxisome associated pathways to drought, dehydration and ABA.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Plant peroxisomes are important components of cellular antioxidant networks, dealing with ROS generated by multiple metabolic pathways. Peroxisomes respond to environmental and cellular conditions by changing their size, number, and proteomic content. To investigate the role of peroxisomes in
Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge