Страница 1 от 127 резултата
OBJECTIVE
There is increasing evidence that suppressed bud burst and thus epicormic shoot emergence (sprouting) are controlled by water-carbohydrate supplies to entire trees and buds. This direct evidence is still lacking for oak. In other respects, recent studies focused on sessile oak, Quercus
Remobilization of internal resources is an important mechanism enabling plants to be partly independent of external nutrient availability. We assessed resource remobilization during the growing period in woody and foliar tissues of leafy branches of mature evergreen Mediterranean oak (Quercus ilex
Combining hydraulic- and carbon-related measurements helps to understand drought-induced plant mortality. Here, we investigated the role that plant respiration (R) plays in determining carbon budgets under drought. We measured the hydraulic conductivity of stems and roots, and gas exchange and
Forest tree species distributed across a wide range of geographical areas are subjected to differential climatic and edaphic conditions and long-term selection, leading to genotypes with morphological and physiological adaptation to the local environment. To test the ability of species to cope with
Fine roots play a significant role in plant and ecosystem respiration (RS); therefore, understanding factors controlling that process is important both to advancing understanding and potentially in modelling carbon (C) budgets. However, very little is known about the extent to which ectomycorrhizal
Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the
COMBINING HYDRAULIC: and carbon-related measurements can help elucidate drought-induced plant mortality. To study drought mortality mechanisms, seedlings of two woody species, including the anisohydric Robinia pseudoacacia and isohydric Quercus acutissima, were cultivated in a greenhouse and
This article describes the online hyphenation of thin layer chromatography with matrix free material enhanced laser desorption/ionization mass spectrometry (mf-MELDI-MS), the preparation of new material for MELDI and application of this newly synthesized material using TLC/MELDI-MS for the analysis
We examined interspecific and intraspecific variation in tree seedling survival as a function of allocation to carbohydrate reserves and structural root biomass. We predicted that allocation to carbohydrate reserves would vary as a function of the phenology of shoot growth, because of a hypothesized
Understanding the mechanisms that determine plant distribution range is crucial for predicting climate-driven range shifts. Compared to altitudinal gradients, less attention has been paid to the mechanisms that determine latitudinal range limit. To test whether intrinsic resource limitation
Plants that store nonstructural carbohydrates (NSC) may rely on carbon reserves to survive carbon-limiting stress, assuming that reserves can be mobilized. We asked whether carbon reserves decrease in resource stressed seedlings, and if NSC allocation is related to species' relative stress
Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were exposed continuously to one of three CO(2) concentrations in open-top chambers under field conditions and evaluated after 24 weeks with respect to carbon exchange rates (CER), chlorophyll (Chl) content, and
Predicted increases in the frequency and severity of droughts have led to a renewed focus on how plants physiologically adjust to low water availability. A popular framework for understanding plant responses to drought characterizes species along a spectrum from isohydry to anisohydry based on their
The present study examines the impact of the C source (reserves vs current assimilates) on tree C isotope signals and stem growth, using experimental girdling to stop the supply of C from leaves to stem. Two-year-old sessile oaks (Quercus petraea) were girdled at three different phenological periods
Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited