Страница 1 от 26 резултата
CYP84 is a recently identified family of cytochrome P450-dependent mono-oxygenases defined by a putative ferulate-5-hydroxylase (F5H) from Arabidopsis. Until recently F5H has been thought to catalyze the hydroxylation of ferulate to 5-OH ferulate en route to sinapic acid. Sinapine, a
This study describes the molecular characterization of the genes BnSCT1 and BnSCT2 from oilseed rape (Brassica napus) encoding the enzyme 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT; EC 2.3.1.91). SCT catalyzes the 1-O-beta-acetal ester-dependent biosynthesis of sinapoylcholine
A cation-exchange column packed with CM-Sephadex C25 matrix was evaluated for its efficiency, capacity, elution volume, and reproducibility in purifying crude extracts of rapeseed or meal for the determination of sinapine content. Combined with a single extraction and ion-exchange column
Arabidopsis thaliana and other members of the Brassicaceae accumulate the hydroxycinnamic acid esters sinapoylmalate in leaves and sinapoylcholine in seeds. Our recent understanding of the phenylpropanoid pathway although complex has enabled us to perturb the sinapine biosynthesis pathway in plants.
Sinapine is a major anti-nutritive compound that accumulates in the seeds of Brassica species. When ingested, sinapine imparts gritty flavuor in meat and milk of animals and fishy odor to eggs of brown egg layers, thereby compromising the potential use of the valuable protein rich seed meal.
1-O-Sinapoylglucose:choline sinapoyltransferase ("sinapine synthase") has been purified from immature seeds of Brassica napus by sequential hydroxylapatite absorption, ion-exchange chromatography, and gel filtration. The purified enzyme has an apparent molecular weight of 65 kDa on gel filtration
A dsRNAi approach silencing a key enzyme of sinapate ester biosynthesis (UDP-glucose:sinapate glucosyltransferase, encoded by the UGT84A9 gene) in oilseed rape (Brassica napus) seeds was performed to reduce the anti-nutritive properties of the seeds by lowering the content of the major seed
We developed two mutant populations of oilseed rape (Brassica napus L.) using EMS (ethylmethanesulfonate) as a mutagen. The populations were derived from the spring type line YN01-429 and the winter type cultivar Express 617 encompassing 5,361 and 3,488 M(2) plants, respectively. A high-throughput
Broccoli sprouts represent a health-promoting food, rich in antioxidant and anti-inflammatory phytochemicals, among which sulfur compounds are most extensively investigated. In this study, the phenolics of broccoli sprouts (Brassica oleracea var. italica 'Cezar') were examined for variability during
We report the spectrophotometric determination of total polyphenols, flavonoids, glucosinolates and antioxidant activity in seeds, seedlings and leaves of Tuscan black kale. The highest content of phytochemicals was observed in 10 days sprouts and antioxidant activity was maximum in 2, 4 days
The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate
Seeds of Brassica oleracea var. acephala (kale) were analyzed by HPLC/UV-PAD/MSn-ESI. Several phenolic acids and flavonol derivatives were identified. The seeds of this B. oleracea variety exhibited more flavonol derivatives than those of tronchuda cabbage (Brassica oleracea var. costata), also
BACKGROUND
The present study is the first effort in a comprehensive evaluation of the nutritive and biological properties of the meal from Rapa Catozza Napoletana (RCN) (Brassica rapa L. var. rapa) cultivar seeds as a new and alternative source of proteins.
RESULTS
RCN seed meal revealed a good
Members of the Brassicaceae accumulate complex patterns of sinapate esters, as shown in this communication with seeds of oilseed rape (Brassica napus). Fifteen seed constituents were isolated and identified by a combination of high-field NMR spectroscopy and high resolution electrospray ionisation
In Brassica napus, suppression of the key biosynthetic enzyme UDP-glucose:sinapic acid glucosyltransferase (UGT84A9) inhibits the biosynthesis of sinapine (sinapoylcholine), the major phenolic component of seeds. Based on the accumulation kinetics of a total of 158 compounds (110 secondary and 48