পৃষ্ঠা 1 থেকে 27 ফলাফল
The optimization of the biotransformation of L-tyrosine into L-dihydroxyphenylalanine (DOPA), and of formyl-tyrosine into formyl-DOPA by alginate-entrapped cells of Mucuna pruriens is reported. This optimization is discussed in terms of parameters that are relevant for the entrapped cell system
Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured
L-3,4-dihydroxyphenylalanine (L-DOPA) is a well-recognized therapeutic compound to Parkinson's disease. Tyrosine is a precursor for the biosynthesis of L-DOPA, both of which are widely found in traditional medicinal material, Mucuna pruriens. In this paper, we described a validated novel analytical
Plant cells of Mucuna pruriens L. entrapped In calcium alginate, calcium pectinate, agarose, or gelatine were able to convert L-tyrosine to L-DOPA, which was released Into the medium. Michaelis-Menten kinetics could be applied on the entrapped cells, based on the measurement of initial rates of
Mucuna pruriens L., commonly known as velvetbean or cow-itch, is a self-pollinated tropical legume of the family Fabaceae, known for its medicinal properties. The active principle L-DOPA extracted from the plant is a potent drug used in the treatment of Parkinson's disease. Although, it is
L-DOPA is an amino acid derivative and most potent drug used against Parkinson's disease, generally obtained from Mucuna pruriens seeds. In present communication, we have studied the in vitro production of L-DOPA from L-tyrosine by novel bacterium Bacillus sp. JPJ. This bacterium produced 99.4% of
A comparative study on the production of 3,4-dihydroxyphenylalanine (L-DOPA) was carried out in cell cultures of two Mucuna species by elicitor treatment and precursor feeding. The influence of elicitors and the precursor molecule on L-DOPA production, polyphenol oxidase (PPO) and tyrosinase
The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing
The effects of limitating nitrogen-containing compounds in the medium and of adding the amino-acid analogues p-fluorophenylalanine and ethionine on both phenoloxidase activity and the accumulation of L-3,4-dihydroxyphenylalanine (L-DOPA) are reported for cell suspension cultures of Mucuna pruriens.
In-vitro-grown cells of Mucuna pruriens, immobilized in calcium-alginate gels, were able to transform the precursor L-tyrosine into L-dihydroxyphenylalanine (L-DOPA). After the immobilization in alginate the plant cells released 90% of the produced L-DOPA into the medium; supplementation of the
Alginate-entrapped cells of Mucuna pruriens L. hydroxylate L-tyrosine, tyramine, para-hydroxyphenylpropionic acid, and para-hydroxyphenylacetic acid to their corresponding catechols, which were released into the incubation medium. Michaëlis-Menten kinetics was applied for each bioconversion. The
The objective of this study was to employ proton nuclear magnetic resonance ((1)H NMR) spectroscopy to evaluate the impact of Mucuna pruriens seeds on the metabolic profile of seminal plasma of infertile patients. A total of 180 infertile patients were administered M. pruriens seed powder for a
UNASSIGNED
Transcriptome analysis and biochemical characterization of the putative l-3,4-dihydroxyphenylalanine (l-DOPA) pathway in Mucuna pruriens (L.) DC have been performed. Spatio-temporal quantification of the putative l-DOPA biosynthetic pathway genes and its correlation with respective
In traditional medicine, the seeds of Thai Mucuna pruriens (T-MP) are used to treat male dysuria and are believed to enhance fertility. However, information pertaining to the toxicity of T-MP and its interaction with other properties is limited. This study was thus conducted to L-DOPA (3,4-dihydroxyphenyl-L-alanine), a modified amino acid, is an expansively used drug for the Parkinson's disease treatment. In the present study, optimization of nutritional parameters influencing L-DOPA production was attempted using the response surface methodology (RSM) from Mucuna