Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Intensive Care Medicine 2004-Sep

A novel approach for selective brain cooling: implications for hypercapnia and seizure activity.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Hubert Trübel
Peter Herman
Christoph Kampmann
Ralf Huth
Paul K Maciejewski
Edward Novotny
Fahmeed Hyder

Ključne riječi

Sažetak

OBJECTIVE

During selective brain cooling (SBC) the brain temperature (TB) is reduced while the core temperature (TC) remains unchanged. This animal study investigated changes in brain temperature induced by a novel approach of cooling the brain from the pharynx (pSBC) and whether these temperature changes are related to commonly encountered clinical situations (i.e., seizure activity and hypercapnia).

METHODS

Experimental animal study.

METHODS

Male Sprague-Dawley rats.

METHODS

pSBC was achieved by a heat exchanger placed in the pharynx; hypercapnia and seizure activity were induced by adding CO2 to the respiratory gases and by intravenous injection of bicuculline, respectively.

RESULTS

TB, TC, and pharynx (TP) were measured continuously with thermocouples. During pSBC TB declined significantly from 36.9+/-0.67 degrees C to 33.1+/-1.23 degrees C. There was a trend towards lower TC during pSBC (from 36.9+/-0.70 to 36.4+/-1.2 degrees C). TP during pSBC was 29.1+/-2.19 degrees C. From the lowest achieved pSBC temperature TB rose during CO2 challenge by 1.22+/-0.67 degrees C (vs. 0.85+/-0.34 degrees C in non-SBC controls). From the lowest pSBC temperature during seizure activity TB rose by 2.08+/-0.35 degrees C (vs. 1.15+/-0.55 degrees C in non-SBC controls).

CONCLUSIONS

Significant cooling of the cortex can be achieved by pSBC in a rat rodent model. Marked increases in TB with hypercapnia and with seizure activity were observed. These results may have implications for cooling methods in clinical settings. For example, pSBC may offer distinct advantages over alternative methods such as whole-body cooling and externally implemented SBC.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge