Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytica Chimica Acta 2019-Dec

A photostable Si-rhodamine-based near-infrared fluorescent probe for monitoring lysosomal pH during heat stroke.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Guo-Jiang Mao
Zhen-Zhen Liang
Guang-Qi Gao
Ying-Ying Wang
Xin-Yu Guo
Li Su
Hua Zhang
Qiu-Juan
Guisheng Zhang

Ključne riječi

Sažetak

Heat stroke is a symptom of hyperthermia with a temperature of more than 40 °C, which usually leads to all kinds of physical discomfort and even death. It is necessary to study the mechanism of action of heat stroke on cells or organelles (such as cytotoxicity of heat) and the processes of cells or organelles during heat stroke. Recent studies have shown that there is a certain correlation between heat stroke and lysosome acidity. In order to clarify their relationship, Lyso-NIR-pH, a photostable Si-rhodamine-based near-infrared fluorescent probe, was developed for sensing pH changes in lysosomes during heat stroke in this paper. For Lyso-NIR-pH, a morpholine group is employed as the lysosome-targeting unit and a H+-triggered openable deoxylactam is employed as the response unit to pH. Lyso-NIR-pH can detect pH with a high selectivity and a sensitivity, and its pKa is 4.63. Lyso-NIR-pH also has outstanding imaging performances, such as excellent lysosome-targeting ability, low autofluorescence and photostable fluorescence signal, which are in favor of long-term imaging of pH with accurate fluorescence signals. Moreover, we successfully applied Lyso-NIR-pH to monitor lysosomal pH increases induced by chloroquine and apoptosis in live cells. Finally, we successfully applied Lyso-NIR-pH for monitoring changes of lysosomal pH during heat stroke. These results confirmed that Lyso-NIR-pH is a powerful tool to monitor pH change in lysosomes and study its possible effects.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge