Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Microbiology 2010-Jul

Cloning and expression of a toxin gene from Pseudomonas fluorescens GcM5-1A.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Lingying Kong
Daosen Guo
Shiyi Zhou
Xinlei Yu
Guixue Hou
Ronggui Li
Boguang Zhao

Ključne riječi

Sažetak

Pseudomonas fluorescens GcM5-1A was isolated from the pine wood nematode (PWN), Bursaphelenchus xylophilus, obtained from wilted Japanese black pine, Pinus thumbergii, in China. In this paper, a genomic library of the GcM5-1A strain was constructed and a toxin-producing clone was isolated by bioassay. Nucleotide sequence analysis revealed an open reading frame of 1,290 bp encoding a protein of 429 amino acids with N-terminal putative signal peptide of 36 amino acids, which shared a similarity of 83, 82 and 80% identity with hypothetical protein PFLU2919 from P. fluorescens SBW25, Dyp-type peroxidase family protein from P. fluorescens Pf-5 and Tat-translocated enzyme from P. fluorescens Pf0-1, respectively. The gene encoding a full-length protein or without the putative signal peptide was cloned and expressed as a soluble protein in E. coli. The recombinant protein was purified to electrophoretic homogeneity by affinity chromatography using a Ni2+ matrix column. Its relative molecular weight was estimated to be 48.5 kDa by SDS-PAGE for full-length protein, and 45.0 kDa for the recombinant protein without putative signal peptide. Bioassay results showed that the recombinant protein with or without the putative signal peptide was toxic to both suspension cells and P. thunbergii seedlings. HPLC analysis demonstrated that components in branch extracts of P. thunbergii were significantly changed after addition of the recombinant full-length protein and hydrogen peroxide, which indicated that it is probably a peroxidase. This study offers information that can be used to determine the mechanism of pine wilt disease caused by the PWN.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge