Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 1995-Nov

Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Q Zhu
T Dabi
A Beeche
R Yamamoto
M A Lawton
C Lamb

Ključne riječi

Sažetak

Phenylalanine ammonia-lyase (PAL) genomic sequences were isolated from a rice (Oryza sativa L.) genomic library using a PCR-amplified rice PAL DNA fragment as a probe. There is a small family of PAL genes in the rice genome. The nucleotide sequence of one PAL gene, ZB8, was determined. The ZB8 gene is 4660 bp in length and consists of two exons and one intron. It encodes a polypeptide of 710 amino acids. The transcription start site was 137 bp upstream from the translation initiation site. Rice PAL transcripts accumulated to a high level in stems, with lower levels in roots and leaves. Wounding of leaf tissues induced ZB8 PAL transcripts to a high level. In rice suspension-cultured cells treated with fungal cell wall elicitors, the ZB8 PAL transcript increased within 30 min and reached maximum levels in 1-2 h. The transcription of the ZB8 gene was investigated by fusing its promoter to the reporter gene beta-glucuronidase (GUS) and transforming the construct into rice and tobacco plants, as well as rice suspension-cultured cells. High levels of GUS activity were observed in stems, moderate levels in roots and low levels in leaves of transgenic rice and tobacco plants. Histochemical analysis indicated that in transgenic rice the promoter was active in root apical tips, lateral root initiation sites, and vascular and epidermal tissues of stems and roots. In rice flowers, high GUS activity was observed in floral shoots, receptacles, anthers and filaments, occasionally GUS activity was also detected in lemma and awn tissues. In tobacco flowers, high GUS activity was detected in the pink part of petals. Consistent with the activity of endogenous PAL transcripts, wounding of rice and tobacco leaf tissues induced GUS activity from low basal levels. Tobacco mosaic virus (TMV) infection of tobacco leaves induced GUS activity to a high level. Fungal cell wall elicitors strongly induced GUS activity and GUS transcripts to high levels in transgenic rice suspension-cultured cells. We demonstrated that the promoter of ZB8 gene is both developmentally regulated and stress-inducible.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge