Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2004-Sep

Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruce and European beech.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Xiping Liu
Alessandra R Kozovits
Thorsten E E Grams
Helmut Blaschke
Heinz Rennenberg
Rainer Matyssek

Ključne riječi

Sažetak

Elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) affect primary metabolism of trees in opposite ways. We studied their potential interactions on carbohydrate concentrations and contents. Two hypotheses currently under debate were tested. (1) Stimulation of primary metabolism by prolonged exposure to elevated [CO2] does not compensate for the adverse effects of O3 on carbohydrate accumulation and biomass partitioning to the root. (2) Growth in a mixed-species planting will repress plant responses to elevated [O3] and [CO2] relative to conditions in a monoculture. To this end, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) saplings grown under conditions of intra- and interspecific competition were pre-acclimated for 1 year to ambient or elevated [CO2]. In the following 2-year phytotron study, trees were exposed to factorial combinations of ambient and elevated [O3] and [CO2]. The total carbohydrate content (sugar and starch) of spruce was greater in plants exposed to elevated [CO2] than in plants exposed to ambient [CO2]. In beech, the opposite response was observed, especially when this species was grown in combination with spruce. Overall, the data did not support Hypothesis 1, because the adverse effects of O3 were counteracted by elevated [CO2]. Support for Hypothesis 2 was species-dependent. In beech saplings, reduction of carbohydrates by elevated [O3] and stimulation by elevated [CO2] were repressed by competitive interaction with spruce. In contrast, in spruce, stimulation of carbohydrates by elevated [CO2] was similar in mono- and mixed cultures. Thus Hypothesis 2 was supported for beech but not spruce. We conclude that, in juvenile beech and spruce, a 3-year exposure to elevated [CO2] counteracts the adverse effects of O3 on carbohydrate concentrations and contents. For beech, sensitivity to elevated [CO2] and [O3] was high in monoculture but was largely repressed by interspecific competition with spruce. In contrast, the response of spruce to perturbations of atmospheric chemistry was not significantly affected by either intra- or interspecific competition.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge