Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 2002-Aug

Effects of temperature and hypercapnia on ventilation and breathing pattern in the lizard Uromastyx aegyptius microlepis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Wilfried Klein
Denis V Andrade
Tobias Wang
E W Taylor

Ključne riječi

Sažetak

In most reptiles, the ventilatory response to hypercapnia consists of large increases in tidal volume (V(T)), whereas the effects on breathing frequency (f(R)) are more variable. The increased V(T) seems to arise from direct inhibition of pulmonary stretch receptors. Most reptiles also exhibit a transitory increase in ventilation upon removal of CO(2) and this post-hypercapnic hyperpnea may consist of changes in both V(T) and f(R). While it is well established that increased body temperature augments the ventilatory response to hypercapnia, the effects of temperature on the post-hypercapnic hyperpnea is less described. In the present study, we characterise the ventilatory response of the agamid lizard Uromastyx aegyptius to hypercapnia and upon the return to air at 25 and 35 degrees C. At both temperatures, hypercapnia caused large increases in V(T) and small reductions in f(R), that were most pronounced at the higher temperature. The post-hypercapnic hyperpnea, which mainly consisted of increased f(R), was numerically larger at 35 compared to 25 degrees C. However, when expressed as a proportion of the levels of ventilation reached during steady-state hypercapnia, the post-hypercapnic hyperpnea was largest at 25 degrees C. Some individuals exhibited buccal pumping where each expiratory thoracic breath was followed by numerous small forced inhalations caused by contractions of the buccal cavity. This breathing pattern was most pronounced during severe hypercapnia and particularly evident during the post-hypercapnic hyperpnea.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge