Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Eye Research 2013-Oct

Expression of perineuronal nets, parvalbumin and protein tyrosine phosphatase σ in the rat visual cortex during development and after BFD.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Hui Liu
Haiwei Xu
Tao Yu
Junping Yao
Congjian Zhao
Zheng Qin Yin

Ključne riječi

Sažetak

Abstract Purpose of the Study: Protein tyrosine phosphatase σ (PTPσ) acts as a neuronal receptor for chondroitin sulfate proteoglycans (CSPGs). CSPGs have inhibitory effects on experience-dependent plasticity and usually form lattice-like cell coatings that surround the parvalbumin (PV) interneurons in the visual cortex (VC). We investigated developmental changes and the effect of binocular form deprivation (BFD) on PTPσ, perineuronal nets (PNNs) and their tempo-spatial relationships with PV neurons in the VC.

METHODS

Double-immunostaining was used to observe the coexpression pattern of PNNs staining by biotinylated wisteria floribunda lectin (WFA) with PV neurons. The expression of PTPσ in the VC of Long Evans rats was detected by real-time quantitative PCR, immunohistochemistry and western blots. The changes in the number of PV/WFA/PTPσ labeled cells in layer IV of the VC and its proportion of PV neurons were examined during development and after BFD.

RESULTS

The expression of PV neurons wrapped by PNNs was increased, particularly in the first half of the critical period, and the ratio for PV neurons reached the highest level (over 75%) at adulthood, indicating that PNNs may play an important role in the maturation of PV neurons during the critical period. BFD decreased the density of PNNs and the percentage of PV neurons with PNNs. This result suggests that the number of PNNs surrounding PV neurons may be experience-dependent. Meanwhile, the CSPG receptor PTPσ was maintained at its lowest level during the critical period and could be modulated by BFD after the critical period. The percentage of PV/WFA/PTPσ-positive cells in PV population increased during development and reached its highest ratio at adulthood, which could also be reversed by BFD.

CONCLUSIONS

The changes in the coexpression of PNNs, PV and PTPσ provide valuable insights into the connection between CSPGs and PV neurons.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge