Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Toxicology 2019-Oct

Investigation into the sub-lethal effects of the triazole fungicide triticonazole in zebrafish (Danio rerio) embryos/larvae.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Christopher Souders
Veronica Perez-Rodriguez
Nader Ahmadie
Xujia Zhang
Claire Tischuk
Christopher Martyniuk

Ključne riječi

Sažetak

Global use of azole fungicides is expected to increase over the next several years. Triticonazole is a triazole fungicide that is used for turf protection, residential, and other commercial applications. As such, it can enter local rural and urban water systems via run-off and rain events. Early life stages of aquatic organisms can be susceptible to pesticides that enter the water, but in the case of triticonazole, data on the potential for subacute toxicity are lacking. Here, we determined the effects of triticonazole on development, oxygen consumption rates, and locomotor activity in zebrafish to address this knowledge gap. Wild-type zebrafish (ABTu strain) embryos and larvae were exposed to triticonazole (1-100 μM) in early development for different lengths of time depending on the assay conducted. Triticonazole did not affect survival nor induce significant deformity (pericardial edema, skeletal defects) in zebrafish at doses up to 100 μM. Oxygen consumption rate was measured in embryos after 24 and 48 hour exposure to triticonazole beginning at ∼6 hpf using the XFe flux analyzer. Triticonazole did not affect basal respiration, oligomycin-induced ATP linked respiration, FCCP-induced maximum respiration, proton leak, spare capacity, nor non-mitochondrial respiration at doses up to 100 μM for 24 hours, even for exposure up to 250 μM for 48 hours. To determine whether the fungicide affected larval swimming activity, the visual motor response test was conducted following triticonazole exposure for 6 days. Larval zebrafish exposed to triticonazole showed hypoactivity in the dark following a 100 μM treatment, suggesting that the fungicide can affect the locomotor activity of zebrafish, albeit at relatively high levels. Given the fact that sublethal biological responses were absent at lower environmentally relevant concentrations, we conclude that triticonazole, relative to other triazole fungicides and types of pesticides, exhibits a relatively low risk of toxicity to the early life stages of fish.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge