Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant and Cell Physiology 2015-Jun

Involvement of the Putative N-Acetylornithine Deacetylase from Arabidopsis thaliana in Flowering and Fruit Development.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Barbara Molesini
Giuseppe Mennella
Flavio Martini
Gianluca Francese
Tiziana Pandolfini

Ključne riječi

Sažetak

In eukaryotic cells, the non-proteinogenic amino acid ornithine is the precursor of arginine and polyamines (PAs). The final step of ornithine biosynthesis occurs in plants via a cyclic pathway catalyzed by N(2)-acetylornithine:N-acetylglutamate acetyltransferase (NAOGAcT). An alternative route for ornithine formation, the linear pathway, has been reported for enteric bacteria and a few other organisms; the acetyl group of N(2)-acetylornithine is released as acetate by N(2)-acetylornithine deacetylase (NAOD). NAOD activity has never been demonstrated in plants, although many putative NAOD-like genes have been identified. In this investigation, we examined the effect of down-regulation of the putative Arabidopsis thaliana NAOD gene by using AtNAOD-silenced (sil#17) and T-DNA insertional mutant (atnaod) plants. The ornithine content was consistently reduced in sil#17 and atnaod plants compared with wild-type plants, suggesting that in addition to NAOGAcT action, AtNAOD contributes to the regulation of ornithine levels in plant cells. Ornithine depletion was associated with altered levels of putrescine and spermine. Reduced AtNAOD expression resulted in alterations at the reproductive level, causing early flowering and impaired fruit setting. In this regard, the highest level of AtNAOD expression was observed in unfertilized ovules. Our findings suggest that AtNAOD acts as a positive regulator of fruit setting and agree with those obtained in tomato auxin-synthesizing parthenocarpic plants, where induction of SlNAOD was associated with the onset of ovary growth. Thus, here we have uncovered the first hints of the functions of AtNAOD by connecting its role in flower and fruit development with the regulation of ornithine and PA levels.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge