Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in Experimental Medicine and Biology 1996

Molecular characterization of Hor v 9. Conservation of a T-cell epitope among group IX pollen allergens and human VCAM and CD2.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
J D Astwood
R D Hill

Ključne riječi

Sažetak

We have cloned, sequenced and expressed a recombinant group IX pollen allergen from barley (Hordeum vulgare). Hor v 9 is a polypeptide of 313 amino acids. The Hor v 9 cDNA clone was engineered into the E. coli protein expression vector pMAL and expressed as a fusion of maltose binding protein and truncated Hor v 9. Polyclonal antibodies to the fusion protein were raised in mice. Cross-reactive proteins, RNA and DNA homologues were found in many agricultural species including wheat, rye, triticale, oats, maize, sunflower and flax. The presence of group IX-like proteins in a variety of agricultural crops may represent a previously uncharacterized aeroallergenic occupational hazard. Sequence comparisons of the barley allergen, Hor v 9, with Poa p 9 and other cloned group IX pollen allergens revealed putative structural domains common to all. These include a signal peptide, two conserved immunoglobulin-like motifs, a 150 amino acid highly conserved carboxyterminal domain and a carboxyterminal transmembrane helix. This structural arrangement is also found in cell adhesion molecules. The highly conserved T-cell epitope previously characterized and mapped in group IX allergens (and present in Hor v 9) was found in several human cell adhesion molecule sequences (VCAM, NCAM and CD2). This T-cell epitope corresponded to the most highly conserved amino acid residues common to all group IX homologues sequenced to date. CD2 and VCAM are known to play a role in allergic inflammation: VCAM is involved in the recruitment of lymphocytes to sites of inflammation, and cross-linking CD2 leads to T-cell activation. We anticipate that the similar structural arrangement of group IX allergens and human cell adhesion molecules, as well as the presence of a T-cell epitope common to group IX pollen allergens and cell adhesion molecules, will have important consequences in the natural history of the atopic immune response.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge