Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports 2014-Jan

Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Chengye Yao
Jiancheng Zhang
Gongping Liu
Fang Chen
Yun Lin

Ključne riječi

Sažetak

(-)-Epigallocatechin-3‑gallate (EGCG), the predominant constituent of green tea, has been demonstrated to be neuroprotective against stroke in rats. However, the precise mechanism of EGCG responsible for neuroprotective activity remains unclear and no established treatment for decreasing the resulting neurological damage of stroke exists. The present study was designed to investigate the neuroprotective mechanism of EGCG on transient focal cerebral ischemia in rats. EGCG, when applied immediately following ischemia, significantly decreased the expression of endoplasmic reticulum stress (ERS)‑related markers, [glucose‑regulated protein 78 (GRP78), C/EBP‑homologous protein (CHOP) and caspase‑12] and apoptosis 24 h following reperfusion. EGCG treatment also significantly reduced infarct volumes and increased neurological scores which was correlated with elevated levels of TRPC6 and phosphorylation of cAMP/Ca2+ response element‑binding protein (p‑CREB) activity, and decreased calpain‑specific aII‑spectrin breakdown product (SBDP145) activity. When mitogen‑activated protein kinase kinase (MEK) activity was specifically inhibited, the neuroprotective effect of EGCG was attenuated and a correlated decrease in CREB activity was observed. In conclusion, the results clearly demonstrated that intracerebroventricular injection of EGCG immediately following ischemia, inhibits ERS and improves the neurological status of rats that have undergone middle cerebral artery occlusion via the inhibition of calpain‑mediated TRPC6 proteolysis and the subsequent activation of CREB via the MEK/extracellular signal-regulated kinases (ERK) pathway.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge