Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Chinese Medicine 2014

Notoginsenoside R1 attenuates hypoxia and hypercapnia-induced vasoconstriction in isolated rat pulmonary arterial rings by reducing the expression of ERK.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Yixiao Xu
Lina Lin
Lanlan Tang
Mengxiao Zheng
Yingchun Ma
Linjing Huang
Wei Meng
Wantie Wang

Ključne riječi

Sažetak

Pulmonary arterial hypertension (PAH) is a disease of the small pulmonary arteries characterized by increased vascular resistance. Pulmonary vasoconstriction has been proven to play a pivotal role in PAH. We have previously hypothesized that Panax notoginseng saponins (PNS) might attenuate hypoxia-hypercapnia-induced pulmonary vasoconstriction. The specific objective of the present study was to investigate the role of notoginsenoside R1, a main ingredient of PNS, in this process and the possible underlying mechanism. The third order pulmonary rings from the Sprague-Dawley rats were treated with different concentrations of notoginsenoside R1 (8, 40, and 100 mg/L, respectively) both before and during the conditions of hypercapnia and hypoxia. Contractile force changes in the rings were detected and the optimal concentration (8 mg/L) was selected. Furthermore, an ERK inhibitor, U0126, was applied to the rings. In addition, pulmonary arterial smooth muscle cells (PASMCs) were cultured under hypoxic and hypercapnic conditions, and notoginsenoside R1 was administered to detect the changes induced by ERK1/2. The results revealed biphasic vasoconstriction in rings under hypoxic and hypercapnic conditions. It is hypothesized that the observed attenuation of vasoconstriction and the production of vasodilation could have been induced by notoginsenoside R1. This effect was found to be significantly reinforced by U0126 (p < 0.05 or p < 0.01). ERK expression in the PASMCs under hypoxic and hypercapnic conditions was significantly activated (p < 0.05 or p < 0.01) and the observed activation was attenuated by notoginsenoside R1 (p < 0.05 or p < 0.01). Our findings strongly support the significant role of notoginsenoside R1 in the inhibition of hypoxia-hypercapnia-induced vasoconstriction by the ERK pathway.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge