Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 1982-Dec

Ontogeny of microbodies (glyoxysomes) in cotyledons of dark-grown watermelon (Citrullus vulgaris Schrad.) seedlings : Ultrastructural evidence.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
G Wanner
E L Vigil
R R Theimer

Ključne riječi

Sažetak

The development of glyoxysomal marker enzyme activities and concomitant ultrastructural evidence for the ontogeny of glyoxysomes has been studied in cotyledons of dark-grown watermelon seedlings (Citrullus vulgaris Schrad., var. Florida Giant). Catalase (CAT, EC 1.11.1.6) was stained in glyoxysomal structures with the 3,3'-diaminobenzidine procedure. Serial sections and high-voltage electron microscopy were used to analyze the three-dimensional structure of the glyoxysomal population. With early germination CAT was localized in three distinct cell structures: spherical microbodies already present in freshly imbibed cotyledons; in appendices on lipid bodies; and in small membrane vesicles between the lipid bodies. Due to their ribosome-binding capacity, both appendices and small vesicles were identified as derivatives of the endoplasmic reticulum (ER). In the following period, glyoxysome formation and lipid body degradation were found to be inseparable processes. The small CAT-containing vesicles attach to a lipid body on a restricted area. Both lipid body appendices and attached cisternae enlarge around and between tightly packed lipid bodies and eventually become pleomorphic glyoxysomes with lipid bodies entrapped into cavities. The close contact between lipid body and glyoxysomes is maintained until the lipid body is digested and the glyoxysomal cavity becomes filled with cytoplasm. During the entire period of increase in glyoxysomal enzyme activities, no evidence was obtained for destruction of glyoxysomes, but small CAT-containing vesicles were observed from day 2 through day 6 after imbibition, indicating a continuous de novo formation of glyoxysomes. This study does not substantiate the hypothesis that glyoxysomes bud directly from the ER. Rather, ER-derivatives, e.g., lipid body appendices or cisternae attached to lipid bodies are interpreted as being glyoxysomal precursors that grow in close contact with lipid bodies both in volume and surface membrane area.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge