Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2019

Pfcyp51 exclusively determines reduced sensitivity to 14α-demethylase inhibitor fungicides in the banana black Sigatoka pathogen Pseudocercospora fijiensis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Pablo Chong
Aikaterini-Eleni Vichou
Henk Schouten
Harold Meijer
Rafael Isaza
Gert Kema

Ključne riječi

Sažetak

The haploid fungus Pseudocercospora fijiensis causes black Sigatoka in banana and is chiefly controlled by extensive fungicide applications, threatening occupational health and the environment. The 14α-Demethylase Inhibitors (DMIs) are important disease control fungicides, but they lose sensitivity in a rather gradual fashion, suggesting an underlying polygenic genetic mechanism. In spite of this, evidence found thus far suggests that P. fijiensis cyp51 gene mutations are the main responsible factor for sensitivity loss in the field. To better understand the mechanisms involved in DMI resistance, in this study we constructed a genetic map using DArTseq markers on two F1 populations generated by crossing two different DMI resistant strains with a sensitive strain. Analysis of the inheritance of DMI resistance in the F1 populations revealed two major and discrete DMI-sensitivity groups. This is an indicative of a single major responsible gene. Using the DMI-sensitivity scorings of both F1 populations and the generation of genetic linkage maps, the sensitivity causal factor was located in a single genetic region. Full agreement was found for genetic markers in either population, underlining the robustness of the approach. The two maps indicated a similar genetic region where the Pfcyp51 gene is found. Sequence analyses of the Pfcyp51 gene of the F1 populations also revealed a matching bimodal distribution with the DMI resistant. Amino acid substitutions in P. fijiensis CYP51 enzyme of the resistant progeny were previously correlated with the loss of DMI sensitivity. In addition, the resistant progeny inherited a Pfcyp51 gene promoter insertion, composed of a repeat element with a palindromic core, also previously correlated with increased gene expression. This genetic approach confirms that Pfcyp51 is the single explanatory gene for reduced sensitivity to DMI fungicides in the analysed P. fijiensis strains. Our study is the first genetic analysis to map the underlying genetic factors for reduced DMI efficacy.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge