Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Photochemistry and Photobiology B: Biology 2016-Aug

Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Jayanta Kumar Patra
Gitishree Das
Kwang-Hyun Baek

Ključne riječi

Sažetak

The biological synthesis of nanoparticles has gained tremendous interest, and plants and plant extracts are preferred over other biological sources for this process because of their rich content of bioactive metabolites. In this study, silver nanoparticles (AgNPs) were produced utilizing the aqueous extract of watermelon rind (WRA), an agricultural waste material under photo exposed condition at room temperature, and tested for their antibacterial, anticandidal and antioxidant activities. The synthesized AgNPs showed surface plasmon resonance at 425nm with an average size of 109.97nm. The morphology and elemental composition was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric and differential thermogravimetric analysis (TG/DTG) confirmed that the bioactive compounds from the WRA extract were involved in the synthesis and capping of AgNPs. X-ray diffraction (XRD) revealed the crystallite nature of the AgNPs. The AgNPs exhibited strong broad spectrum antibacterial activity against five different foodborne bacteria with zones of inhibition 9.12-14.54mm in diameter. When AgNPs were mixed with kanamycin and rifampicin the mixture exhibited strong antibacterial synergistic activity. The AgNPs also exerted strong synergistic anticandidal activity when they were combined with amphotericin b. The AgNPs had high antioxidant activity and reducing power. Overall, the results confirmed the bio-potentials of the synthesized AgNPs using WRA, which could have applications in the biomedical, cosmetic, pharmaceutical, food preservation and packaging industries.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge