Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 1998-Apr

Regulation of rat glutathione S-transferase A5 by cancer chemopreventive agents: mechanisms of inducible resistance to aflatoxin B1.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
J D Hayes
D J Pulford
E M Ellis
R McLeod
R F James
J Seidegård
E Mosialou
B Jernström
G E Neal

Ključne riječi

Sažetak

The rat can be protected against aflatoxin B1 (AFB1) hepatocarcinogenesis by being fed on a diet containing the synthetic antioxidant ethoxyquin. Evidence suggests that chemoprotection against AFB1 is due to increased detoxification of the mycotoxin by one or more inducible drug-metabolising enzymes. The glutathione S-transferase (GST) isoenzymes in rat liver that contribute to ethoxyquin-induced chemoprotection against AFB1 have been identified by protein purification. This approach resulted in the isolation of several heterodimeric class alpha GST, all of which contained the A5 subunit and possessed at least 50-fold greater activity towards AFB1-8,9-epoxide than previously studied transferases. Molecular cloning and heterologous expression of rat GSTA5-5 has led to the demonstration that it exhibits substantially greater activity for AFB1-8,9-epoxide than other rat transferases. The A5 homodimer can also catalyse the conjugation of glutathione with other epoxides, such as trans-stilbene oxide and 1,2-epoxy-3-(4'-nitrophenoxy)propane, and possesses high catalytic activity for the reactive aldehyde 4-hydroxynonenal. Western blotting has shown that the A5 subunit is not only induced by ethoxyquin but that it is also induced by other cancer chemopreventive agents, such as butylated hydroxyanisole, oltipraz, benzyl isothiocyanate, indole-3-carbinol and coumarin. In addition to GSTA5, we have identified a novel aflatoxin-aldehyde reductase (AFAR) that is similarly induced by ethoxyquin. However, immunoblotting has shown that GSTA5 and AFAR are not always co-ordinately regulated by chemoprotectors. In order to gain a better understanding of the mechanisms responsible for the induction of GSTA5 protein, the GSTA5 gene has been cloned. It was isolated on two overlapping bacteriophage lambda clones and found to be approximately 12 kb in length. The transcriptional start site of GSTA5 has been identified 228 bp upstream from the ATG translational initiation codon. Computer-assisted analysis of the upstream sequence has indicated the presence of a putative antioxidant responsive element (located between -421 and -429 bp) which may be responsible for the induction of GSTA5 by chemopreventive agents.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge