Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurotoxicity Research 2018-07

Sodium Metabisulfite: Effects on Ionic Currents and Excitotoxicity.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Ming-Chi Lai
Te-Yu Hung
Kao-Min Lin
Pi-Shan Sung
Shyh-Jong Wu
Chih-Sheng Yang
Yi-Jen Wu
Jing-Jane Tsai
Sheng-Nan Wu
Chin-Wei Huang

Ključne riječi

Sažetak

How sodium metabisulfite (SMB; Na2S2O5), a popular food preservative and antioxidant, interacts with excitable membrane and induces excitotoxicity is incompletely understood. In this study, the patch-clamp technique was used to investigate and record the electrophysiological effect of SMB on electrically excitable HL-1 cardiomyocytes and NSC-34 neurons, as well as its relationship to pilocarpine-induced seizures and neuronal excitotoxicity in rats. We used Western blotting, to analyze sodium channel expression on hippocampi after chronic SMB treatment. It was found that voltage-gated Na+ current (I Na) was stimulated, and current inactivation and deactivation were slowed in SMB-treated (30 μM) HL-1 cardiomyocytes. SMB-induced increases of I Na were attenuated in cells treated with ranolazine (10 μM) or eugenol (30 μM). The current-voltage relationship of I Na shifted to slightly more negative potentials in SMB-treated cells, the peak I Na with an EC50 value of 18 μM increased, and the steady-state inactivation curve of I Na shifted to a more positive potential. However, the tail component of the rapidly activating delayed-rectifier K+ current (I Kr) was dose-dependently inhibited. Cell-attached voltage-clamp recordings in SMB-treated cells showed that the frequency of action currents and prolonged action potential were higher. In SMB-treated NSC-34 neurons, the peak I Na was higher; however, neither the time to peak nor the inactivation time constant (I Na) changed. Pilocarpine-induced seizures were exacerbated, and acute neuronal damage and chronic mossy fiber sprouting increased in SMB-treated rats. Western blotting showed higher expression of the sodium channel in cells after chronic SMB treatment. We conclude that SMB contributes to the sodium channel-activating mechanism through which it alters cellular excitability and excitotoxicity in wide-spectrum excitable cells.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge