Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2019-Jan

Syringa pinnatifolia Hemsl. fraction protects against myocardial ischemic injury by targeting the p53-mediated apoptosis pathway.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Xiao Feng
Ruifei Zhang
Junjun Li
Yuan Cao
Feng Zhao
Xiaolang Du
Xiaoli Gao
Lan Cao
Suyile Chen
Pengfei Tu

Ključne riječi

Sažetak

Peeled stems of Syringa pinnatifolia Hemsl. (SP) have been widely used to treat extra "He-Yi" induced myocardial ischemia for hundreds of years in Inner Mongolia, China and previous result showed that intragastric pretreatment with total extract (T) of SP has a protective effect against myocardial infarction (MI).This study aims to describe the pharmacological investigation and chemical characterization of the major (M) and minor (N) fractions obtained from T through column chromatography fractionation on macroporous resin and to explore whether the regulatory effects were linked to the p53-mediated apoptosis pathways.Left anterior descending (LAD) coronary artery-ligated mice and H9c2 cells cultured in serum-free medium under hypoxic conditions were treated with T, M, and N.Echocardiography was performed and biomarkers in serum were determined in mice, and pathological changes were observed through histopathology assay. Immunofluorescence staining and qRT-PCR were used to detect the expression levels of p53 in heart tissue. Flow cytometry was used to measure the level of apoptosis and caspase-3 activity in H9c2 cells. Western blot analysis was conducted to detect p53 and p53-mediated proteins apoptosis pathways of in both tissue and H9c2 cells.Both T and M have an equivalent cardioprotective effect whereas N is non-active. M decreased MI-induced myocardial compensatory expansion by decrease of left ventricular end-systolic diameter (LVESd) and left ventricular end-diastolic diameter (LVEDd) and prevented decreases in ejection fraction (EF) and fractional shortening (FS). The MI-induced increased levels of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and hypersensitive C-reactive protein (hs-CRP) were decreased and the expanded infarction size was reduced. M could also improve cell viability and inhibit apoptosis in H9c2 cells under hypoxic conditions. Immunofluorescence and qRT-PCR assay showed that M suppressed p53 expression in the myocardium. Western blot analysis showed that M could prevent MI-induced activation of p53-mediated apoptosis pathway in both myocardium and H9c2 cells.The results demonstrated that M may protect against myocardial ischemia by improving cardiac function and inhibiting cardiomyocytes apoptosis. Overall, the present findings supported the clinical application of SP and enriched the research of anti-myocardial ischemia drug from traditional medicines.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge